BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12298003)

  • 1. Chemically modified "polar patch" mutants of subtilisin in peptide synthesis with remarkably broad substrate acceptance: designing combinatorial biocatalysts.
    Matsumoto K; Davis BG; Jones JB
    Chemistry; 2002 Sep; 8(18):4129-37. PubMed ID: 12298003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzophenone boronic acid photoaffinity labeling of subtilisin CMMs to probe altered specificity.
    DeSantis G; Paech C; Jones JB
    Bioorg Med Chem; 2000 Mar; 8(3):563-70. PubMed ID: 10732973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward tailoring the specificity of the S1 pocket of subtilisin B. lentus: chemical modification of mutant enzymes as a strategy for removing specificity limitations.
    DeSantis G; Shang X; Jones JB
    Biochemistry; 1999 Oct; 38(40):13391-7. PubMed ID: 10529215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the S1 and S1' pockets of subtilisin Bacillus lentus.
    DeSantis G; Berglund P; Stabile MR; Gold M; Jones JB
    Biochemistry; 1998 Apr; 37(17):5968-73. PubMed ID: 9558332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering substrate preference in subtilisin: structural and kinetic analysis of a specificity mutant.
    Ruan B; London V; Fisher KE; Gallagher DT; Bryan PN
    Biochemistry; 2008 Jun; 47(25):6628-36. PubMed ID: 18507395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-selective glycosylation of subtilisin Bacillus lentus causes dramatic increases in esterase activity.
    Lloyd RC; Davis BG; Jones JB
    Bioorg Med Chem; 2000 Jul; 8(7):1537-44. PubMed ID: 10976502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The controlled introduction of multiple negative charge at single amino acid sites in subtilisin Bacillus lentus.
    Davis BG; Shang X; DeSantis G; Bott RR; Jones JB
    Bioorg Med Chem; 1999 Nov; 7(11):2293-301. PubMed ID: 10632039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors.
    Legendre D; Laraki N; Gräslund T; Bjørnvad ME; Bouchet M; Nygren PA; Borchert TV; Fastrez J
    J Mol Biol; 2000 Feb; 296(1):87-102. PubMed ID: 10656819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a substrate-specific cold-adapted subtilisin.
    Tindbaek N; Svendsen A; Oestergaard PR; Draborg H
    Protein Eng Des Sel; 2004 Feb; 17(2):149-56. PubMed ID: 15047911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering the specificity of subtilisin Bacillus lentus through the introduction of positive charge at single amino acid sites.
    Davis BG; Khumtaveeporn K; Bott RR; Jones JB
    Bioorg Med Chem; 1999 Nov; 7(11):2303-11. PubMed ID: 10632040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site.
    Antikainen NM; Hergenrother PJ; Harris MM; Corbett W; Martin SF
    Biochemistry; 2003 Feb; 42(6):1603-10. PubMed ID: 12578373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent modification of subtilisin Bacillus lentus cysteine mutants with enantiomerically pure chiral auxiliaries causes remarkable changes in activity.
    Dickman M; Jones JB
    Bioorg Med Chem; 2000 Aug; 8(8):1957-68. PubMed ID: 11003141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the altered specificity and catalytic properties of mutant subtilisin chemically modified at position S156C and S166C in the S1 pocket.
    DeSantis G; Jones JB
    Bioorg Med Chem; 1999 Jul; 7(7):1381-7. PubMed ID: 10465412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the autoprocessing site of subtilisin YaB-G124A.
    Chang YS; Liaw SH; Mei HC; Hsu CC; Wu CY; Tsai YC
    Biochem Biophys Res Commun; 2002 Feb; 291(1):165-9. PubMed ID: 11829478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 DD-peptidase: the structural basis of acyl acceptor specificity.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9961-70. PubMed ID: 16042373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed coevolution of stability and catalytic activity in calcium-free subtilisin.
    Strausberg SL; Ruan B; Fisher KE; Alexander PA; Bryan PN
    Biochemistry; 2005 Mar; 44(9):3272-9. PubMed ID: 15736937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9971-9. PubMed ID: 16042374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library.
    Nowlan C; Li Y; Hermann JC; Evans T; Carpenter J; Ghanem E; Shoichet BK; Raushel FM
    J Am Chem Soc; 2006 Dec; 128(49):15892-902. PubMed ID: 17147402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the substrate scope of enzymes: combining mutations obtained by CASTing.
    Reetz MT; Carballeira JD; Peyralans J; Höbenreich H; Maichele A; Vogel A
    Chemistry; 2006 Aug; 12(23):6031-8. PubMed ID: 16789057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.