These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 12298045)

  • 1. An electrochemical probe of DNA stacking in an antisense oligonucleotide containing a C3'-endo-locked sugar.
    Boon EM; Barton JK; Pradeepkumar PI; Isaksson J; Petit C; Chattopadhyaya J
    Angew Chem Int Ed Engl; 2002 Sep; 41(18):3402-5. PubMed ID: 12298045
    [No Abstract]   [Full Text] [Related]  

  • 2. NMR studies of fully modified locked nucleic acid (LNA) hybrids: solution structure of an LNA:RNA hybrid and characterization of an LNA:DNA hybrid.
    Nielsen KE; Rasmussen J; Kumar R; Wengel J; Jacobsen JP; Petersen M
    Bioconjug Chem; 2004; 15(3):449-57. PubMed ID: 15149171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional LNA/DNA arrays: estimating the helicity of LNA/DNA hybrid duplex.
    Rinker S; Liu Y; Yan H
    Chem Commun (Camb); 2006 Jul; (25):2675-7. PubMed ID: 16786084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of LNA:DNA hybrids from molecular dynamics simulations: the effect of locked nucleotides.
    Ivanova A; Rösch N
    J Phys Chem A; 2007 Sep; 111(38):9307-19. PubMed ID: 17718546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Antisense oligonucleotides containing 1-(beta-D-2'-deoxy-threo-pentofuranosyl)thymine at the 3'- and 5'-end].
    Krynetskaia NF; Chebotar' OA; Ibragim KKh; Romanova EA; Tashlitskiĭ VN; Oretskaia TS; Sokolova NI; Shabarova ZA
    Bioorg Khim; 1994 Jun; 20(6):669-75. PubMed ID: 7945461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time quantitative allele discrimination assay using 3' locked nucleic acid primers for detection of low-percentage mosaic mutations.
    Maertens O; Legius E; Speleman F; Messiaen L; Vandesompele J
    Anal Biochem; 2006 Dec; 359(1):144-6. PubMed ID: 16962063
    [No Abstract]   [Full Text] [Related]  

  • 7. Sequence-dependent thermodynamic parameters for locked nucleic acid (LNA)-DNA duplex formation.
    McTigue PM; Peterson RJ; Kahn JD
    Biochemistry; 2004 May; 43(18):5388-405. PubMed ID: 15122905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic aspects of locked nucleic acids quadruplex association and dissociation.
    Petraccone L; Erra E; Randazzo A; Giancola C
    Biopolymers; 2006 Dec; 83(6):584-94. PubMed ID: 16944520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locked nucleic acid molecular beacons.
    Wang L; Yang CJ; Medley CD; Benner SA; Tan W
    J Am Chem Soc; 2005 Nov; 127(45):15664-5. PubMed ID: 16277483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing alternative foldings of the HIV-1 leader RNA by antisense oligonucleotide scanning arrays.
    Ooms M; Verhoef K; Southern E; Huthoff H; Berkhout B
    Nucleic Acids Res; 2004; 32(2):819-27. PubMed ID: 14762209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntheses and base-pairing properties of locked nucleic acid nucleotides containing hypoxanthine, 2,6-diaminopurine, and 2-aminopurine nucleobases.
    Koshkin AA
    J Org Chem; 2004 May; 69(11):3711-8. PubMed ID: 15153000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of N3- and 2-NH2-substituted 6,7-diphenylpterins and their use as intermediates for the preparation of oligonucleotide conjugates designed to target photooxidative damage on single-stranded DNA representing the bcr-abl chimeric gene.
    Crean CW; Camier R; Lawler M; Stevenson C; Davies RJ; Boyle PH; Kelly JM
    Org Biomol Chem; 2004 Dec; 2(24):3588-601. PubMed ID: 15592617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Progress in locked nucleic acid research].
    Li SM; Xu X; Liang HP; Li L
    Sheng Li Ke Xue Jin Zhan; 2003 Oct; 34(4):319-23. PubMed ID: 14992013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an RNA bulge structure by Fourier transform infrared spectroscopy.
    Banyay M; Sandbrink J; Strömberg R; Gräslund A
    Biochem Biophys Res Commun; 2004 Nov; 324(2):634-9. PubMed ID: 15474474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural interpretation of J coupling constants in guanosine and deoxyguanosine: modeling the effects of sugar pucker, backbone conformation, and base pairing.
    Vokácová Z; Bickelhaupt FM; Sponer J; Sychrovský V
    J Phys Chem A; 2009 Jul; 113(29):8379-86. PubMed ID: 19569693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclease resistant methylphosphonate-DNA/LNA chimeric oligonucleotides.
    Nagahama K; Veedu RN; Wengel J
    Bioorg Med Chem Lett; 2009 May; 19(10):2707-9. PubMed ID: 19375912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformationally restricted carbohydrate-modified nucleic acids and antisense technology.
    Herdewijn P
    Biochim Biophys Acta; 1999 Dec; 1489(1):167-79. PubMed ID: 10807006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2'-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation.
    Manoharan M
    Biochim Biophys Acta; 1999 Dec; 1489(1):117-30. PubMed ID: 10807002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LNA (locked nucleic acid) and analogs as triplex-forming oligonucleotides.
    Højland T; Kumar S; Babu BR; Umemoto T; Albaek N; Sharma PK; Nielsen P; Wengel J
    Org Biomol Chem; 2007 Aug; 5(15):2375-9. PubMed ID: 17637956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanics and dynamics studies on two structurally related amide-modified DNA backbones for antisense technology.
    Fritsch V; De Mesmaeker A; Waldner A; Lebreton J; Blommers MJ; Wolf RM
    Bioorg Med Chem; 1995 Mar; 3(3):321-35. PubMed ID: 7541696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.