These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 1229820)
21. [Morphological anatomy of the cranial nerves in their cisternal segment (III-XII)]. Mercier P; Brassier G; Fournier HD; Delion M; Papon X; Lasjaunias P Neurochirurgie; 2009 Apr; 55(2):78-86. PubMed ID: 19328500 [TBL] [Abstract][Full Text] [Related]
22. Gustatory innervation in the rabbit: central distribution of sensory and motor components of the chorda tympani, glossopharyngeal, and superior laryngeal nerves. Hanamori T; Smith DV J Comp Neurol; 1989 Apr; 282(1):1-14. PubMed ID: 2708588 [TBL] [Abstract][Full Text] [Related]
23. Topographic representation of the sensory and motor roots of the vagus nerve in the medulla of goldfish, Carassius auratus. Morita Y; Finger TE J Comp Neurol; 1987 Oct; 264(2):231-49. PubMed ID: 3680630 [TBL] [Abstract][Full Text] [Related]
24. The efferent system of cranial nerve nuclei: a comparative neuromorphological study. Székely G; Matesz C Adv Anat Embryol Cell Biol; 1993; 128():1-92. PubMed ID: 8493888 [TBL] [Abstract][Full Text] [Related]
25. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. Kalia M; Mesulam MM J Comp Neurol; 1980 Sep; 193(2):435-65. PubMed ID: 7440777 [TBL] [Abstract][Full Text] [Related]
26. [Neuroanatomy of the optic, trigeminal, facial, glossopharyngeal, vagus, accessory and hypoglossal nerves (author's transl)]. Lang J Arch Otorhinolaryngol; 1981; 231(1):1-69. PubMed ID: 7020666 [TBL] [Abstract][Full Text] [Related]
27. Representation of the cecum in the lateral dorsal motor nucleus of the vagus nerve and commissural subnucleus of the nucleus tractus solitarii in rat. Altschuler SM; Ferenci DA; Lynn RB; Miselis RR J Comp Neurol; 1991 Feb; 304(2):261-74. PubMed ID: 1707898 [TBL] [Abstract][Full Text] [Related]
28. Organization within the cranial IX-X complex in ranid frogs: a horseradish peroxidase transport study. Stuesse SL; Cruce WL; Powell KS J Comp Neurol; 1984 Jan; 222(3):358-65. PubMed ID: 6607937 [TBL] [Abstract][Full Text] [Related]
29. ANATOMICAL STUDY OF CRANIAL NERVE EMERGENCE AND SKULL FORAMINA IN THE HORSE USING MAGNETIC RESONANCE IMAGING AND COMPUTED TOMOGRAPHY. Gonçalves R; Malalana F; McConnell JF; Maddox T Vet Radiol Ultrasound; 2015; 56(4):391-7. PubMed ID: 25832323 [TBL] [Abstract][Full Text] [Related]
30. The motor nuclei and sensory neurons of the IIIrd, IVth, and VIth cranial nerves in the monitor lizard, Varanus exanthematicus. Barbas-Henry HA; Lohman AH J Comp Neurol; 1988 Jan; 267(3):370-86. PubMed ID: 3343406 [TBL] [Abstract][Full Text] [Related]
31. Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad. Oka Y; Takeuchi H; Satou M; Ueda K J Comp Neurol; 1987 May; 259(3):400-23. PubMed ID: 3584564 [TBL] [Abstract][Full Text] [Related]
32. Tracing cranial nerve pathways (glossopharyngeal, vagus, and hypoglossal) in SIDS and control infants: a DiI study. Loeliger M; Tolcos M; Leditschke J; Campbell P; Rees S J Neuropathol Exp Neurol; 2000 Sep; 59(9):822-9. PubMed ID: 11005263 [TBL] [Abstract][Full Text] [Related]
33. Afferent and efferent projections of the glossopharyngeal-vagal nerve in the hagfish. Matsuda H; Goris RC; Kishida R J Comp Neurol; 1991 Sep; 311(4):520-30. PubMed ID: 1757601 [TBL] [Abstract][Full Text] [Related]
34. Afferent and efferent components of the facial nerve in the bullfrog (Rana catesbeiana). Fuller PM J Morphol; 1979 Feb; 159(2):245-52. PubMed ID: 310889 [TBL] [Abstract][Full Text] [Related]
35. Topological analysis of the brainstem of the reedfish, Erpetoichthys calabaricus. Nieuwenhuys R; Oey PL J Comp Neurol; 1983 Jan; 213(2):220-32. PubMed ID: 6841670 [No Abstract] [Full Text] [Related]
36. Termination of trigeminal primary afferents on glossopharyngeal-vagal motoneurons: possible neural networks underlying the swallowing phase and visceromotor responses of prey-catching behavior. Kecskes S; Matesz C; Birinyi A Brain Res Bull; 2013 Oct; 99():109-16. PubMed ID: 24076270 [TBL] [Abstract][Full Text] [Related]
37. Central projections of the glossopharyngeal and vagal nerves in the channel catfish, Ictalurus punctatus: clues to differential processing of visceral inputs. Kanwal JS; Caprio J J Comp Neurol; 1987 Oct; 264(2):216-30. PubMed ID: 3680629 [TBL] [Abstract][Full Text] [Related]
38. Motoneurons differ in size and peripheral target in the trigeminal and facial nuclear complex of the frog. Matesz C; Birinyi A; Hevessy Z J Hirnforsch; 1994; 35(1):67-70. PubMed ID: 8021457 [TBL] [Abstract][Full Text] [Related]
39. Morphology and distribution of the glossopharyngeal nerve afferent and efferent neurons in the Mexican salamander, axolotl: a cobaltic-lysine study. Nagai T; Matsushima T J Comp Neurol; 1990 Dec; 302(3):473-84. PubMed ID: 1702112 [TBL] [Abstract][Full Text] [Related]
40. On the origin and innervation of the cranial and spinal nerves along with the autonomic nervous system of the Indian gar-fish Xenentodon cancila (Ham.). Gupta OP Anat Anz; 1972; 131(1):39-50. PubMed ID: 5055656 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]