BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12298207)

  • 1. [Monitoring the orientation of myosin bridges on two-dimensional maps of birefringence in a single muscle fiber].
    Skrebnitskaia LK; Neĭman SA; Rozhdestvenskaia ZE; Vishniakov GN
    Biofizika; 2002; 47(4):686-90. PubMed ID: 12298207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Two-dimensional reconstruction of birefringence map of the skeletal muscle sarcomere in relaxed and rigor states studied by interference microscopy].
    Skrebnitskaia LK; Vishniakov GN; Neĭman SA; Rozhdestvenskaia ZE; Andreev OA; Levin GG
    Biofizika; 2001; 46(3):518-23. PubMed ID: 11449554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A birefringence study of changes in myosin orientation during relaxation of skinned muscle fibers induced by photolytic ATP release.
    Peckham M; Ferenczi MA; Irving M
    Biophys J; 1994 Sep; 67(3):1141-8. PubMed ID: 7811926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Caldesmon inhibits formation of strongly bound myosin cross-bridges and activates an ability of weakly bound cross-bridges to transform actin monomers to the off-conformation].
    Vikhorev PG; Vikhoreva NN; Rosliakova MA; Chacko S; Borovikov IuS
    Tsitologiia; 2000; 42(5):444-53. PubMed ID: 10890050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of phosphorylating myosin light chains and ionic strength on actin-myosin interaction in a relaxed skeletal muscle fiber].
    Efimov NN; Borovikov IuS
    Biokhimiia; 1995 Nov; 60(11):1799-802. PubMed ID: 8590753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Optic methods for measurements of muscle fiber birefringence].
    Vishniakov GN; Levin GG
    Biofizika; 2002; 47(4):711-5. PubMed ID: 12298212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Birefringence changes in vertebrate striated muscle.
    Taylor DL
    J Supramol Struct; 1975; 3(2):181-91. PubMed ID: 172736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the flexibility of myosin in solution.
    Curry JF; Krause S
    Biopolymers; 1991 Dec; 31(14):1677-87. PubMed ID: 1793809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bifunctional rhodamine probes of Myosin regulatory light chain orientation in relaxed skeletal muscle fibers.
    Brack AS; Brandmeier BD; Ferguson RE; Criddle S; Dale RE; Irving M
    Biophys J; 2004 Apr; 86(4):2329-41. PubMed ID: 15041671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle.
    Xu S; Malinchik S; Gilroy D; Kraft T; Brenner B; Yu LC
    Biophys J; 1997 Nov; 73(5):2292-303. PubMed ID: 9370426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of the myosin converter domain alters cross-bridge elasticity.
    Köhler J; Winkler G; Schulte I; Scholz T; McKenna W; Brenner B; Kraft T
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3557-62. PubMed ID: 11904418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative studies on the polarization optical properties of striated muscle. I. Birefringence changes of rabbit psoas muscle in the transition from rigor to relaxed state.
    Toylor DL
    J Cell Biol; 1976 Mar; 68(3):497-511. PubMed ID: 16016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myosin crossbridge orientation in demembranated muscle fibres studied by birefringence and X-ray diffraction measurements.
    Peckham M; Irving M
    J Mol Biol; 1989 Nov; 210(1):113-26. PubMed ID: 2585513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between mechanical and enzymatic events in contracting skeletal muscle fiber.
    Shepard A; Borejdo J
    Biochemistry; 2004 Mar; 43(10):2804-11. PubMed ID: 15005615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state fluorescence polarization studies of the orientation of myosin regulatory light chains in single skeletal muscle fibers using pure isomers of iodoacetamidotetramethylrhodamine.
    Sabido-David C; Brandmeier B; Craik JS; Corrie JE; Trentham DR; Irving M
    Biophys J; 1998 Jun; 74(6):3083-92. PubMed ID: 9635762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional functional communication between myosin subfragments 1 and 2 in skeletal muscle fibers.
    Kobayashi T; Kosuge S; Sugi H
    Adv Exp Med Biol; 1998; 453():435-40. PubMed ID: 9889855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dependence of rigor tension developed by skinned rabbit psoas fibers on the ionic strength of solution].
    Lednev VV; Srebnitskaia LK; Khromov AS
    Biofizika; 1983; 28(3):508-9. PubMed ID: 6871277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H-NMR studies of the intracellular water of skeletal muscle fibers under various physiological conditions.
    Yamada T
    Cell Mol Biol (Noisy-le-grand); 2001 Jul; 47(5):925-33. PubMed ID: 11728103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vertebrate skeletal muscle thick filaments are not three-stranded. Reinterpretation of some experimental data.
    Skubiszak L; Kowalczyk L
    Acta Biochim Pol; 2002; 49(4):841-53. PubMed ID: 12545191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributions of calcium in A and I bands of skinned vertebrate muscle fibers stretched to beyond filament overlap.
    Cantino ME; Eichen JG; Daniels SB
    Biophys J; 1998 Aug; 75(2):948-56. PubMed ID: 9675195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.