BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 12322963)

  • 1. Poly(epsilon-caprolactone) and poly(epsilon-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro.
    Jones DS; Djokic J; McCoy CP; Gorman SP
    Biomaterials; 2002 Dec; 23(23):4449-58. PubMed ID: 12322963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The resistance of polyvinylpyrrolidone-iodine-poly(-caprolactone) blends to adherence of Escherichia coli.
    Jones DS; Djokic J; Gorman SP
    Biomaterials; 2005 May; 26(14):2013-20. PubMed ID: 15576175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials.
    Jones DS; McLaughlin DW; McCoy CP; Gorman SP
    Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends.
    Zhao H; Zhao G
    J Mech Behav Biomed Mater; 2016 Jan; 53():59-67. PubMed ID: 26313249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content.
    Zhang L; Zhang C; Zhang W; Zhang H; Hou Z
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel semi-interpenetrating hydrogel networks with enhanced mechanical properties and thermoresponsive engineered drug delivery, designed as bioactive endotracheal tube biomaterials.
    Jones DS; Andrews GP; Caldwell DL; Lorimer C; Gorman SP; McCoy CP
    Eur J Pharm Biopharm; 2012 Nov; 82(3):563-71. PubMed ID: 22940251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J; Boss A; Chronakis IS
    Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential polyurethane-poly(methylmethacrylate) interpenetrating polymer networks as ureteral biomaterials: mechanical properties and comparative resistance to urinary encrustation.
    Jones DS; Bonner MC; Gorman SP; Akay M; Keane PF
    J Mater Sci Mater Med; 1997 Nov; 8(11):713-7. PubMed ID: 15348824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo AM; McCarthy AD; Cortizo MS
    J Biomater Sci Polym Ed; 2010; 21(10):1297-312. PubMed ID: 20534186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly (vinylpyrrolidone)‑iodine engineered poly (ε-caprolactone) nanofibers as potential wound dressing materials.
    Shitole AA; Raut P; Giram P; Rade P; Khandwekar A; Garnaik B; Sharma N
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110731. PubMed ID: 32204042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation rate.
    Ribeiro S; Carvalho AM; Fernandes EM; Gomes ME; Reis RL; Bayon Y; Zeugolis DI
    Acta Biomater; 2021 Feb; 121():303-315. PubMed ID: 33227488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique.
    Esmaeilzadeh J; Hesaraki S; Hadavi SM; Esfandeh M; Ebrahimzadeh MH
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():807-819. PubMed ID: 27987776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immiscible poly(lactic acid)/poly(ε-caprolactone) for temporary implants: Compatibility and cytotoxicity.
    Finotti PF; Costa LC; Capote TS; Scarel-Caminaga RM; Chinelatto MA
    J Mech Behav Biomed Mater; 2017 Apr; 68():155-162. PubMed ID: 28171812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ɛ-caprolactone) composites reinforced by biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber.
    Ju D; Han L; Li F; Chen S; Dong L
    Int J Biol Macromol; 2014 Jun; 67():343-50. PubMed ID: 24704167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.
    Pal J; Kankariya N; Sanwaria S; Nandan B; Srivastava RK
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA.
    Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T
    Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(ε-caprolactone) polymer for bone tissue regeneration.
    Lei B; Shin KH; Noh DY; Koh YH; Choi WY; Kim HE
    J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):967-75. PubMed ID: 22279025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable network elastomeric polyesters from multifunctional aliphatic carboxylic acids and poly(epsilon-caprolactone) diols.
    Nagata M; Kato K; Sakai W; Tsutsumi N
    Macromol Biosci; 2006 May; 6(5):333-9. PubMed ID: 16676379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.