BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12322971)

  • 1. Electrochemical platinum coatings for improving performance of implantable microelectrode arrays.
    de Haro C; Mas R; Abadal G; Muñoz J; Perez-Murano F; Dominguez C
    Biomaterials; 2002 Dec; 23(23):4515-21. PubMed ID: 12322971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and optimization of microelectrode arrays for in vivo nerve signal recording and stimulation.
    Blau A; Ziegler C; Heyer M; Endres F; Schwitzgebel G; Matthies T; Stieglitz T; Meyer JU; Göpel W
    Biosens Bioelectron; 1997; 12(9-10):883-92. PubMed ID: 9451781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation.
    Rui YF; Liu JQ; Yang B; Li KY; Yang CS
    Biomed Microdevices; 2012 Apr; 14(2):367-73. PubMed ID: 22124887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
    Negi S; Bhandari R; Rieth L; Solzbacher F
    Biomed Mater; 2010 Feb; 5(1):15007. PubMed ID: 20124668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical microelectrode degradation monitoring:
    Doering M; Kieninger J; Urban GA; Weltin A
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34983028
    [No Abstract]   [Full Text] [Related]  

  • 6. Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters.
    Mailley S; Hyland M; Mailley P; McLaughlin JA; McAdams ET
    Bioelectrochemistry; 2004 Jun; 63(1-2):359-64. PubMed ID: 15110303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved chronic neural stimulation using high surface area platinum electrodes.
    Shah KG; Tolosa VM; Tooker AC; Felix SH; Pannu SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1546-9. PubMed ID: 24109995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Roughening of Thin-Film Platinum Macro and Microelectrodes.
    Ivanovskaya AN; Belle AM; Yorita A; Qian F; Chen S; Tooker A; Lozada RG; Dahlquist D; Tolosa V
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31305526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo stability of black-platinum coatings on flexible, polymer microECoG arrays.
    Zátonyi A; Fedor F; Borhegyi Z; Fekete Z
    J Neural Eng; 2018 Oct; 15(5):054003. PubMed ID: 29947620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel platinum black electroplating technique improving mechanical stability.
    Kim R; Nam Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():184-7. PubMed ID: 24109655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings.
    Cogan SF; Ehrlich J; Plante TD; Van Wagenen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7147-50. PubMed ID: 19965266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical characteristics of microelectrode designed for electrical stimulation.
    Cui H; Xie X; Xu S; Chan LLH; Hu Y
    Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compositional and morphological properties of platinum-iridium electrodeposited on carbon fiber microelectrodes.
    Della Valle E; Welle EJ; Chestek CA; Weiland JD
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34428753
    [No Abstract]   [Full Text] [Related]  

  • 14. Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings.
    Márton G; Bakos I; Fekete Z; Ulbert I; Pongrácz A
    J Mater Sci Mater Med; 2014 Mar; 25(3):931-40. PubMed ID: 24318022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of corrosion behaviors and surface profiles of platinum-coated electrodes by electrochemistry and complementary microscopy: biomedical implications for anticancer therapy.
    Kim HB; Ahn S; Jang HJ; Sim SB; Kim KW
    Micron; 2007; 38(7):747-53. PubMed ID: 17493825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of sputtered-carbon microelectrode arrays.
    Sreenivas G; Ang SS; Fritsch I; Brown WD; Gerhardt GA; Woodward DJ
    Anal Chem; 1996 Jun; 68(11):1858-64. PubMed ID: 21619097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving cochlear implant properties through conductive hydrogel coatings.
    Hassarati RT; Dueck WF; Tasche C; Carter PM; Poole-Warren LA; Green RA
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):411-8. PubMed ID: 24608692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Study of the Long-Term Electrochemical Stability of Thin-Film Titanium-Platinum Microelectrodes and Their Comparison to Classic, Wire-Based Platinum Microelectrodes in Selected Inorganic Electrolytes.
    Szklarz Z; Kołczyk-Siedlecka K; Vereshchagina E; Herbjørnrød A; Wittendorp P; Jain S; Wójcik PJ
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive.
    Kim R; Nam Y
    J Neural Eng; 2015 Apr; 12(2):026010. PubMed ID: 25738544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-porous platinum electrodes for functional electrical stimulation.
    Boretius T; Jurzinsky T; Koehler C; Kerzenmacher S; Hillebrecht H; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5404-7. PubMed ID: 22255559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.