BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 12323083)

  • 1. Dietary cholesterol-oxidation products accumulate in serum and liver in apolipoprotein E-deficient mice, but do not accelerate atherosclerosis.
    Ando M; Tomoyori H; Imaizumi K
    Br J Nutr; 2002 Oct; 88(4):339-45. PubMed ID: 12323083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus.
    Ferderbar S; Pereira EC; Apolinário E; Bertolami MC; Faludi A; Monte O; Calliari LE; Sales JE; Gagliardi AR; Xavier HT; Abdalla DS
    Diabetes Metab Res Rev; 2007 Jan; 23(1):35-42. PubMed ID: 16634125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dietary oxysterols on coronary arteries in hyperlipidaemic hamsters.
    Meynier A; Lherminier J; Demaison-Meloche J; Ginies C; Grandgirard A; Demaison L
    Br J Nutr; 2002 May; 87(5):447-58. PubMed ID: 12010578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of macrophage-derived apolipoprotein E on hyperlipidemia and atherosclerosis of LDLR-deficient mice.
    Shi W; Wang X; Wong J; Hedrick CC; Wong H; Castellani LW; Lusis AJ
    Biochem Biophys Res Commun; 2004 Apr; 317(1):223-9. PubMed ID: 15047172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry.
    Dzeletovic S; Breuer O; Lund E; Diczfalusy U
    Anal Biochem; 1995 Feb; 225(1):73-80. PubMed ID: 7778789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary cholesterol and differential monocyte chemoattractant protein-1 gene expression in aorta and liver of apo E-deficient mice.
    Tous M; Ferré N; Rull A; Marsillach J; Coll B; Alonso-Villaverde C; Camps J; Joven J
    Biochem Biophys Res Commun; 2006 Feb; 340(4):1078-84. PubMed ID: 16403442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histologic, hematologic, and biochemical characteristics of apo E-deficient mice: effects of dietary cholesterol and phytosterols.
    Moghadasian MH; Nguyen LB; Shefer S; McManus BM; Frohlich JJ
    Lab Invest; 1999 Mar; 79(3):355-64. PubMed ID: 10092072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol feeding increases plasma and aortic tissue cholesterol oxide levels in parallel: further evidence for the role of cholesterol oxidation in atherosclerosis.
    Hodis HN; Crawford DW; Sevanian A
    Atherosclerosis; 1991 Aug; 89(2-3):117-26. PubMed ID: 1793439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effect of walnut oil and safflower oil on the serum cholesterol level and lesion area in the aortic root of apolipoprotein E-deficient mice.
    Iwamoto M; Kono M; Kawamoto D; Tomoyori H; Sato M; Imaizumi K
    Biosci Biotechnol Biochem; 2002 Jan; 66(1):141-6. PubMed ID: 11866096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deficiency of inducible NO synthase reduces advanced but not early atherosclerosis in apolipoprotein E-deficient mice.
    Miyoshi T; Li Y; Shih DM; Wang X; Laubach VE; Matsumoto AH; Helm GA; Lusis AJ; Shi W
    Life Sci; 2006 Jul; 79(6):525-31. PubMed ID: 16516241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3β,5α,6β-Oxygenated sterols from the South China Sea gorgonian Muriceopsis flavida and their tumor cell growth inhibitory activity and apoptosis-inducing function.
    Liu TF; Lu X; Tang H; Zhang MM; Wang P; Sun P; Liu ZY; Wang ZL; Li L; Rui YC; Li TJ; Zhang W
    Steroids; 2013 Jan; 78(1):108-14. PubMed ID: 23123740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stigmasterol reduces plasma cholesterol levels and inhibits hepatic synthesis and intestinal absorption in the rat.
    Batta AK; Xu G; Honda A; Miyazaki T; Salen G
    Metabolism; 2006 Mar; 55(3):292-9. PubMed ID: 16483871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urotensin II receptor knockout mice on an ApoE knockout background fed a high-fat diet exhibit an enhanced hyperlipidemic and atherosclerotic phenotype.
    Bousette N; D'Orleans-Juste P; Kiss RS; You Z; Genest J; Al-Ramli W; Qureshi ST; Gramolini A; Behm D; Ohlstein EH; Harrison SM; Douglas SA; Giaid A
    Circ Res; 2009 Sep; 105(7):686-95, 19 p following 695. PubMed ID: 19696412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of sterol biosynthesis in L cells and mouse liver cells by 15-oxygenated sterols.
    Schroepfer GJ; Parish EJ; Chen HW; Kandutsch AA
    J Biol Chem; 1977 Dec; 252(24):8975-80. PubMed ID: 925033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apolipoprotein E promotes the regression of atherosclerosis independently of lowering plasma cholesterol levels.
    Raffai RL; Loeb SM; Weisgraber KH
    Arterioscler Thromb Vasc Biol; 2005 Feb; 25(2):436-41. PubMed ID: 15591220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of atherosclerosis in Balb/c apolipoprotein E-deficient mice.
    Desai A; Zhao Y; Warren JS
    Cardiovasc Pathol; 2008; 17(4):233-40. PubMed ID: 18402814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged high-fat feeding enhances aortic 18F-FDG and 99mTc-annexin A5 uptake in apolipoprotein E-deficient and wild-type C57BL/6J mice.
    Zhao Y; Kuge Y; Zhao S; Strauss HW; Blankenberg FG; Tamaki N
    J Nucl Med; 2008 Oct; 49(10):1707-14. PubMed ID: 18794270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of dietary oxidized cholesterol and oxidized fatty acids in the development of atherosclerosis.
    Staprans I; Pan XM; Rapp JH; Feingold KR
    Mol Nutr Food Res; 2005 Nov; 49(11):1075-82. PubMed ID: 16270280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of trans-1,4-bis(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride and carbon monoxide on hepatic cholesterol biosynthesis from 4,4,-dimethyl sterols in vitro.
    Gibbons GF; Mitropoulos KA
    Biochim Biophys Acta; 1975 Feb; 380(2):270-81. PubMed ID: 1120146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conversion of cholest-5-en-3beta-ol into cholest-7-en-3beta-ol by the echinoderms Asterias rubens and Solaster papposus.
    Smith AG; Goad LJ
    Biochem J; 1975 Jan; 146(1):35-40. PubMed ID: 1147903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.