BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12324273)

  • 1. Epifluorescent and histochemical aspects of shoot anatomy of Typha latifolia L., Typha angustifolia L. and Typha glauca Godr.
    McManus HA; Seago JL; Marsh LC
    Ann Bot; 2002 Oct; 90(4):489-93. PubMed ID: 12324273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P
    Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure.
    Witztum A; Wayne R
    Ann Bot; 2014 Apr; 113(5):789-97. PubMed ID: 24532647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term competitive displacement of Typha latifolia by Typha angustifolia in a eutrophic lake.
    Weiner SE
    Oecologia; 1993 Jun; 94(3):451-456. PubMed ID: 28313685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Hybridization in Cattails (Typha spp.) and Its Implications for the Evolutionary Maintenance of Native Typha latifolia.
    Pieper SJ; Nicholls AA; Freeland JR; Dorken ME
    J Hered; 2017 Jul; 108(5):479-487. PubMed ID: 28430996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An examination of hybridization between the cattail species typha latifolia and typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers.
    Kuehn MM; Minor JE; White BN
    Mol Ecol; 1999 Dec; 8(12):1981-90. PubMed ID: 10632850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.).
    Duman F; Urey E; Koca FD
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17886-96. PubMed ID: 26162443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine.
    Tsyusko OV; Smith MH; Sharitz RR; Glenn TC
    Am J Bot; 2005 Jul; 92(7):1161-9. PubMed ID: 21646138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots.
    Meyer CJ; Seago JL; Peterson CA
    Ann Bot; 2009 Mar; 103(5):687-702. PubMed ID: 19151041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae).
    Corrêa FF; Pereira MP; Madail RH; Santos BR; Barbosa S; Castro EM; Pereira FJ
    Braz J Biol; 2017 Mar; 77(1):52-59. PubMed ID: 27382995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of hybrid breakdown among invasive hybrid cattails (Typha × glauca).
    Bhargav VV; Freeland JR; Dorken ME
    Heredity (Edinb); 2022 Sep; 129(3):195-201. PubMed ID: 35933492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glyphosate (Ab)sorption by Shoots and Rhizomes of Native versus Hybrid Cattail (Typha).
    Zheng T; Sutton NB; de Jager P; Grosshans R; Munira S; Farenhorst A
    Bull Environ Contam Toxicol; 2017 Nov; 99(5):595-600. PubMed ID: 28913582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fate of arsenic, cadmium and lead in Typha latifolia: a case study on the applicability of micro-PIXE in plant ionomics.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Regvar M; Pelicon P; Schröder P
    J Hazard Mater; 2013 Mar; 248-249():371-8. PubMed ID: 23416480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome assembly, annotation, and comparative analysis of the cattail Typha latifolia.
    Widanagama SD; Freeland JR; Xu X; Shafer ABA
    G3 (Bethesda); 2022 Feb; 12(2):. PubMed ID: 34871392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site.
    Ben Salem Z; Laffray X; Al-Ashoor A; Ayadi H; Aleya L
    J Environ Sci (China); 2017 Apr; 54():56-68. PubMed ID: 28391949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salinity, not genetic incompatibilities, limits the establishment of the invasive hybrid cattail
    Tisshaw K; Freeland J; Dorken M
    Ecol Evol; 2020 Nov; 10(21):12091-12103. PubMed ID: 33209272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of harvesting on constructed wetlands performance - a comparison between Scirpus grossus and Typha angustifolia.
    Jinadasa KB; Tanaka N; Sasikala S; Werellagama DR; Mowjood MI; Ng WJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 May; 43(6):664-71. PubMed ID: 18393076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.