These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 12324320)
21. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Izawa S; Ikeda K; Takahashi N; Inoue Y Appl Microbiol Biotechnol; 2007 Jun; 75(3):533-7. PubMed ID: 17505771 [TBL] [Abstract][Full Text] [Related]
22. Superior molasses assimilation, stress tolerance, and trehalose accumulation of baker's yeast isolated from dried sweet potatoes (hoshi-imo). Nishida O; Kuwazaki S; Suzuki C; Shima J Biosci Biotechnol Biochem; 2004 Jul; 68(7):1442-8. PubMed ID: 15277748 [TBL] [Abstract][Full Text] [Related]
23. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough. Panadero J; Randez-Gil F; Prieto JA J Agric Food Chem; 2005 Dec; 53(26):9966-70. PubMed ID: 16366681 [TBL] [Abstract][Full Text] [Related]
24. Bread Dough and Baker's Yeast: An Uplifting Synergy. Struyf N; Van der Maelen E; Hemdane S; Verspreet J; Verstrepen KJ; Courtin CM Compr Rev Food Sci Food Saf; 2017 Sep; 16(5):850-867. PubMed ID: 33371607 [TBL] [Abstract][Full Text] [Related]
25. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast. Lin X; Zhang CY; Bai XW; Feng B; Xiao DG Int J Food Microbiol; 2015 Mar; 197():15-21. PubMed ID: 25555226 [TBL] [Abstract][Full Text] [Related]
26. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H Biosci Biotechnol Biochem; 2012; 76(3):624-7. PubMed ID: 22451415 [TBL] [Abstract][Full Text] [Related]
27. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast. Sasano Y; Haitani Y; Hashida K; Oshiro S; Shima J; Takagi H Int J Food Microbiol; 2013 Aug; 165(3):241-5. PubMed ID: 23800735 [TBL] [Abstract][Full Text] [Related]
28. The development of low temperature inactive (Lti) baker's yeast. Gysler C; Niederberger P Appl Microbiol Biotechnol; 2002 Feb; 58(2):210-6. PubMed ID: 11876414 [TBL] [Abstract][Full Text] [Related]
29. Metagenetic Analysis for Microbial Characterization of Ferrara M; Sisto A; Mulè G; Lavermicocca P; De Bellis P Foods; 2021 May; 10(6):. PubMed ID: 34070312 [TBL] [Abstract][Full Text] [Related]
30. Specific antioxidant enzymes are involved in the freeze-thawing response of industrial baker's yeasts. Kronberg MF; Terlizzi NL; Galvagno MA Lett Appl Microbiol; 2023 Oct; 76(10):. PubMed ID: 37766391 [TBL] [Abstract][Full Text] [Related]
31. Metabolomic insights into the effect of chickpea protein hydrolysate on the freeze-thaw tolerance of industrial yeasts. Kang S; Xu Y; Kang Y; Rao J; Xiang F; Ku S; Li W; Liu Z; Guo Y; Xu J; Zhu X; Zhou M Food Chem; 2024 May; 439():138143. PubMed ID: 38103490 [TBL] [Abstract][Full Text] [Related]
32. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough. Sun X; Zhang CY; Wu MY; Fan ZH; Liu SN; Zhu WB; Xiao DG Microb Cell Fact; 2016 Apr; 15():54. PubMed ID: 27039899 [TBL] [Abstract][Full Text] [Related]
33. Hsp104 contributes to freeze-thaw tolerance by maintaining proteasomal activity in a spore clone isolated from Shirakami kodama yeast. Nakazawa N; Fukuda M; Ashizaki M; Shibata Y; Takahashi K J Gen Appl Microbiol; 2021 Oct; 67(4):170-178. PubMed ID: 34148914 [TBL] [Abstract][Full Text] [Related]
34. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough. Zhang CY; Lin X; Feng B; Liu XE; Bai XW; Xu J; Pi L; Xiao DG Appl Microbiol Biotechnol; 2016 Jul; 100(14):6375-6383. PubMed ID: 27041690 [TBL] [Abstract][Full Text] [Related]
35. Improved properties of baker's yeast mutants resistant to 2-deoxy-D-glucose. Rincón AM; Codón AC; Castrejón F; Benítez T Appl Environ Microbiol; 2001 Sep; 67(9):4279-85. PubMed ID: 11526034 [TBL] [Abstract][Full Text] [Related]
36. Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae. Shima J; Sakata-Tsuda Y; Suzuki Y; Nakajima R; Watanabe H; Kawamoto S; Takano H Appl Environ Microbiol; 2003 Jan; 69(1):715-8. PubMed ID: 12514069 [TBL] [Abstract][Full Text] [Related]
37. Use of a Selected De Bellis P; Rizzello CG; Sisto A; Valerio F; Lonigro SL; Conte A; Lorusso V; Lavermicocca P Foods; 2019 Feb; 8(2):. PubMed ID: 30781845 [TBL] [Abstract][Full Text] [Related]
38. Global expression studies in baker's yeast reveal target genes for the improvement of industrially-relevant traits: the cases of CAF16 and ORC2. Pérez-Torrado R; Panadero J; Hernández-López MJ; Prieto JA; Randez-Gil F Microb Cell Fact; 2010 Jul; 9():56. PubMed ID: 20626860 [TBL] [Abstract][Full Text] [Related]
39. Exploiting heterozygosity in industrial yeasts to create new and improved baker's yeasts. Korhola M; Naumova ES; Partti E; Aittamaa M; Turakainen H; Naumov GI Yeast; 2019 Sep; 36(9):571-587. PubMed ID: 31243797 [TBL] [Abstract][Full Text] [Related]
40. A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth. Van Dijck P; Ma P; Versele M; Gorwa MF; Colombo S; Lemaire K; Bossi D; Loïez A; Thevelein JM J Mol Microbiol Biotechnol; 2000 Oct; 2(4):521-30. PubMed ID: 11075928 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]