BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12324409)

  • 1. A theoretical model of slow wave regulation using voltage-dependent synthesis of inositol 1,4,5-trisphosphate.
    Imtiaz MS; Smith DW; van Helden DF
    Biophys J; 2002 Oct; 83(4):1877-90. PubMed ID: 12324409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitation of the responses to injections of inositol 1,4,5-trisphosphate analogs in Limulus ventral photoreceptors.
    Levitan I; Payne R; Potter BV; Hillman P
    Biophys J; 1994 Sep; 67(3):1161-72. PubMed ID: 7811929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ phase waves: a basis for cellular pacemaking and long-range synchronicity in the guinea-pig gastric pylorus.
    van Helden DF; Imtiaz MS
    J Physiol; 2003 Apr; 548(Pt 1):271-96. PubMed ID: 12576498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of inositol 1,4,5-trisphosphate formation in the voltage-dependent regulation of the Ca(2+) concentration in porcine coronary arterial smooth muscle cells.
    Yamamura H; Ohya S; Muraki K; Imaizumi Y
    J Pharmacol Exp Ther; 2012 Aug; 342(2):486-96. PubMed ID: 22588257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves.
    Jafri MS; Keizer J
    Biophys J; 1995 Nov; 69(5):2139-53. PubMed ID: 8580358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agonist-evoked Ca(2+) wave progression requires Ca(2+) and IP(3).
    McCarron JG; Chalmers S; MacMillan D; Olson ML
    J Cell Physiol; 2010 Aug; 224(2):334-44. PubMed ID: 20432430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of intracellular Ca(2+) stores in gallbladder smooth muscle.
    Morales S; Camello PJ; Mawe GM; Pozo MJ
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G507-13. PubMed ID: 15499078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical calculation of intracellular calcium wave characteristics.
    Kupferman R; Mitra PP; Hohenberg PC; Wang SS
    Biophys J; 1997 Jun; 72(6):2430-44. PubMed ID: 9168020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inositol (1,4,5)trisphosphate metabolism and enhanced calcium mobilization in airway smooth muscle of hyperresponsive rats.
    Tao FC; Tolloczko B; Mitchell CA; Powell WS; Martin JG
    Am J Respir Cell Mol Biol; 2000 Oct; 23(4):514-20. PubMed ID: 11017917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation of IP(3)-mediated Ca(2+) waves in Xenopus oocytes.
    Marchant J; Callamaras N; Parker I
    EMBO J; 1999 Oct; 18(19):5285-99. PubMed ID: 10508162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-conductance Ca2+-dependent K+ channels are the target of spike-induced Ca2+ release in a feedback regulation of pyramidal cell excitability.
    Yamada S; Takechi H; Kanchiku I; Kita T; Kato N
    J Neurophysiol; 2004 May; 91(5):2322-9. PubMed ID: 14695351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular mechanism of the voltage-dependent change in slow potentials generated in circular smooth muscle of the guinea-pig gastric corpus.
    Hirst GD; Hashitani H; Suzuki H
    J Physiol; 2008 Nov; 586(22):5521-36. PubMed ID: 18818248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling observed chaotic oscillations in bursting neurons: the role of calcium dynamics and IP3.
    Falcke M; Huerta R; Rabinovich MI; Abarbanel HD; Elson RC; Selverston AI
    Biol Cybern; 2000 Jun; 82(6):517-27. PubMed ID: 10879435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics.
    Tang Y; Stephenson JL; Othmer HG
    Biophys J; 1996 Jan; 70(1):246-63. PubMed ID: 8770202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium oscillations and waves: is the IP3R Ca2+ channel the culprit?
    Keizer J
    Biophys J; 1993 Oct; 65(4):1359-61. PubMed ID: 8274628
    [No Abstract]   [Full Text] [Related]  

  • 16. Two-dimensional model of calcium waves reproduces the patterns observed in Xenopus oocytes.
    Girard S; Lückhoff A; Lechleiter J; Sneyd J; Clapham D
    Biophys J; 1992 Feb; 61(2):509-17. PubMed ID: 1547335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitatory regulation of angiotensin II on gastric motility and its mechanism in guinea pig.
    Lu HL; Wang ZY; Huang X; Han YF; Wu YS; Guo X; Kim YC; Xu WX
    Regul Pept; 2011 Apr; 167(2-3):170-6. PubMed ID: 21256873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The initial inositol 1,4,5-trisphosphate response induced by histamine is strongly amplified by Ca(2+) release from internal stores in smooth muscle.
    Rueda A; García L; Soria-Jasso LE; Arias-Montaño JA; Guerrero-Hernández A
    Cell Calcium; 2002 Apr; 31(4):161-73. PubMed ID: 12027381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local positive feedback by calcium in the propagation of intracellular calcium waves.
    Wang SS; Thompson SH
    Biophys J; 1995 Nov; 69(5):1683-97. PubMed ID: 8580312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sarcoplasmic reticulum Ca2+ store arrangement in vascular smooth muscle.
    Rainbow RD; Macmillan D; McCarron JG
    Cell Calcium; 2009; 46(5-6):313-22. PubMed ID: 19836074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.