BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 12324414)

  • 1. Pore topology of the hyperpolarization-activated cyclic nucleotide-gated channel from sea urchin sperm.
    Roncaglia P; Mistrík P; Torre V
    Biophys J; 2002 Oct; 83(4):1953-64. PubMed ID: 12324414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S4 movement in a mammalian HCN channel.
    Vemana S; Pandey S; Larsson HP
    J Gen Physiol; 2004 Jan; 123(1):21-32. PubMed ID: 14676284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of Na(+) and K(+) in the pore of cyclic nucleotide-gated channels.
    Gamel K; Torre V
    Biophys J; 2000 Nov; 79(5):2475-93. PubMed ID: 11053124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel.
    Rothberg BS; Shin KS; Phale PS; Yellen G
    J Gen Physiol; 2002 Jan; 119(1):83-91. PubMed ID: 11773240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A homology model of the pore region of HCN channels.
    Giorgetti A; Carloni P; Mistrik P; Torre V
    Biophys J; 2005 Aug; 89(2):932-44. PubMed ID: 15951376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidine 518 in the S6-CNBD linker controls pH dependence and gating of HCN channel from sea-urchin sperm.
    Mistrík P; Torre V
    Pflugers Arch; 2004 Apr; 448(1):76-84. PubMed ID: 14767770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages.
    Männikkö R; Elinder F; Larsson HP
    Nature; 2002 Oct; 419(6909):837-41. PubMed ID: 12397358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm.
    Gauss R; Seifert R; Kaupp UB
    Nature; 1998 Jun; 393(6685):583-7. PubMed ID: 9634235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new hyperpolarization-activated, cyclic nucleotide-gated channel from sea urchin sperm flagella.
    Galindo BE; Neill AT; Vacquier VD
    Biochem Biophys Res Commun; 2005 Aug; 334(1):96-101. PubMed ID: 15992765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A leucine zipper motif essential for gating of hyperpolarization-activated channels.
    Wemhöner K; Silbernagel N; Marzian S; Netter MF; Rinné S; Stansfeld PJ; Decher N
    J Biol Chem; 2012 Nov; 287(48):40150-60. PubMed ID: 23048023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow conformational changes of the voltage sensor during the mode shift in hyperpolarization-activated cyclic-nucleotide-gated channels.
    Bruening-Wright A; Larsson HP
    J Neurosci; 2007 Jan; 27(2):270-8. PubMed ID: 17215386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic relationship between the voltage sensor and the activation gate in spHCN channels.
    Bruening-Wright A; Elinder F; Larsson HP
    J Gen Physiol; 2007 Jul; 130(1):71-81. PubMed ID: 17591986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct populations of HCN pacemaker channels produce voltage-dependent and voltage-independent currents.
    Proenza C; Yellen G
    J Gen Physiol; 2006 Feb; 127(2):183-90. PubMed ID: 16446506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hysteresis in the voltage dependence of HCN channels: conversion between two modes affects pacemaker properties.
    Männikkö R; Pandey S; Larsson HP; Elinder F
    J Gen Physiol; 2005 Mar; 125(3):305-26. PubMed ID: 15710913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of the C-helix during the gating of cyclic nucleotide-gated channels.
    Mazzolini M; Punta M; Torre V
    Biophys J; 2002 Dec; 83(6):3283-95. PubMed ID: 12496096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperpolarization-activated, cyclic nucleotide-gated cation channels in Aplysia: Contribution to classical conditioning.
    Yang Q; Kuzyk P; Antonov I; Bostwick CJ; Kohn AB; Moroz LL; Hawkins RD
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):16030-5. PubMed ID: 26668355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore-to-gate coupling of HCN channels revealed by a pore variant that contributes to gating but not permeation.
    Azene EM; Sang D; Tsang SY; Li RA
    Biochem Biophys Res Commun; 2005 Feb; 327(4):1131-42. PubMed ID: 15652514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperpolarization-activated, cyclic AMP-gated, HCN1-like cation channel: the primary, full-length HCN isoform expressed in a saccular hair-cell layer.
    Cho WJ; Drescher MJ; Hatfield JS; Bessert DA; Skoff RP; Drescher DG
    Neuroscience; 2003; 118(2):525-34. PubMed ID: 12699787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromechanical coupling mechanism for activation and inactivation of an HCN channel.
    Dai G; Aman TK; DiMaio F; Zagotta WN
    Nat Commun; 2021 May; 12(1):2802. PubMed ID: 33990563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominant-negative suppression of HCN1- and HCN2-encoded pacemaker currents by an engineered HCN1 construct: insights into structure-function relationships and multimerization.
    Xue T; Marbán E; Li RA
    Circ Res; 2002 Jun; 90(12):1267-73. PubMed ID: 12089064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.