These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12324476)

  • 1. Membrane topology of the acyl-lipid desaturase from Bacillus subtilis.
    Diaz AR; Mansilla MC; Vila AJ; de Mendoza D
    J Biol Chem; 2002 Dec; 277(50):48099-106. PubMed ID: 12324476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing.
    Mansilla MC; de Mendoza D
    Arch Microbiol; 2005 May; 183(4):229-35. PubMed ID: 15711796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The desaturase from Bacillus subtilis, a promising tool for the selective olefination of phospholipids.
    Bonamore A; Macone A; Colotti G; Matarese RM; Boffi A
    J Biotechnol; 2006 Jan; 121(1):49-53. PubMed ID: 16105701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase.
    Aguilar PS; Cronan JE; de Mendoza D
    J Bacteriol; 1998 Apr; 180(8):2194-200. PubMed ID: 9555904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural determinant of functionality in acyl lipid desaturases.
    Sastre DE; Saita E; Uttaro AD; de Mendoza D; Altabe SG
    J Lipid Res; 2018 Oct; 59(10):1871-1879. PubMed ID: 30087203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Bacillus subtilis acyl lipid desaturase is a delta5 desaturase.
    Altabe SG; Aguilar P; Caballero GM; de Mendoza D
    J Bacteriol; 2003 May; 185(10):3228-31. PubMed ID: 12730185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of ferredoxin and flavodoxins in Bacillus subtilis fatty acid desaturation.
    Chazarreta-Cifre L; Martiarena L; de Mendoza D; Altabe SG
    J Bacteriol; 2011 Aug; 193(16):4043-8. PubMed ID: 21665975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the biosynthesis of unsaturated fatty acids in Bacillus cereus ATCC 14579 and functional characterization of novel acyl-lipid desaturases.
    Chazarreta Cifré L; Alemany M; de Mendoza D; Altabe S
    Appl Environ Microbiol; 2013 Oct; 79(20):6271-9. PubMed ID: 23913431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis.
    Aguilar PS; Lopez P; de Mendoza D
    J Bacteriol; 1999 Nov; 181(22):7028-33. PubMed ID: 10559169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity.
    Cybulski LE; del Solar G; Craig PO; Espinosa M; de Mendoza D
    J Biol Chem; 2004 Sep; 279(38):39340-7. PubMed ID: 15247225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligomerization of Bacillus subtilis DesR is required for fine tuning regulation of membrane fluidity.
    Najle SR; Inda ME; de Mendoza D; Cybulski LE
    Biochim Biophys Acta; 2009 Oct; 1790(10):1238-43. PubMed ID: 19595746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator.
    Albanesi D; Mansilla MC; de Mendoza D
    J Bacteriol; 2004 May; 186(9):2655-63. PubMed ID: 15090506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small membrane-peripheral region close to the active center determines regioselectivity of membrane-bound fatty acid desaturases from Aspergillus nidulans.
    Hoffmann M; Hornung E; Busch S; Kassner N; Ternes P; Braus GH; Feussner I
    J Biol Chem; 2007 Sep; 282(37):26666-26674. PubMed ID: 17636265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position.
    Cahoon EB; Lindqvist Y; Schneider G; Shanklin J
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4872-7. PubMed ID: 9144157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two clusters of residues contribute to the activity and substrate specificity of Fm1, a bifunctional oleate and linoleate desaturase of fungal origin.
    Cai Y; Yu XH; Liu Q; Liu CJ; Shanklin J
    J Biol Chem; 2018 Dec; 293(51):19844-19853. PubMed ID: 30348899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis.
    Aguilar PS; Hernandez-Arriaga AM; Cybulski LE; Erazo AC; de Mendoza D
    EMBO J; 2001 Apr; 20(7):1681-91. PubMed ID: 11285232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor.
    Porrini L; Cybulski LE; Altabe SG; Mansilla MC; de Mendoza D
    Microbiologyopen; 2014 Apr; 3(2):213-24. PubMed ID: 24574048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase.
    Shanklin J; Whittle E; Fox BG
    Biochemistry; 1994 Nov; 33(43):12787-94. PubMed ID: 7947684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure determinants for the substrate specificity of acyl-CoA Δ9 desaturases from a marine copepod.
    Meesapyodsuk D; Qiu X
    ACS Chem Biol; 2014 Apr; 9(4):922-34. PubMed ID: 24475735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase.
    Cybulski LE; Albanesi D; Mansilla MC; Altabe S; Aguilar PS; de Mendoza D
    Mol Microbiol; 2002 Sep; 45(5):1379-88. PubMed ID: 12207704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.