BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 12324958)

  • 1. Transgenic flies expressing the fluorescence calcium sensor Cameleon 2.1 under UAS control.
    Diegelmann S; Fiala A; Leibold C; Spall T; Buchner E
    Genesis; 2002; 34(1-2):95-8. PubMed ID: 12324958
    [No Abstract]   [Full Text] [Related]  

  • 2. In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression.
    Fiala A; Spall T
    Sci STKE; 2003 Mar; 2003(174):PL6. PubMed ID: 12644713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calmodulin UAS-constructs and the in vivo roles of calmodulin: analysis of a muscle-specific phenotype.
    Wang B; Bolduc C; Beckingham K
    Genesis; 2002; 34(1-2):86-90. PubMed ID: 12324956
    [No Abstract]   [Full Text] [Related]  

  • 4. Expressing UAS-bab1 and UAS-bab2: a comparative study of gain-of-function effects and the potential to rescue the bric à brac mutant phenotype.
    Bardot O; Godt D; Laski FA; Couderc JL
    Genesis; 2002; 34(1-2):66-70. PubMed ID: 12324950
    [No Abstract]   [Full Text] [Related]  

  • 5. Reverse genetics in Drosophila: from sequence to phenotype using UAS-RNAi transgenic flies.
    Enerly E; Larsson J; Lambertsson A
    Genesis; 2002; 34(1-2):152-5. PubMed ID: 12324972
    [No Abstract]   [Full Text] [Related]  

  • 6. Targeted mutagenesis of the Sap47 gene of Drosophila: flies lacking the synapse associated protein of 47 kDa are viable and fertile.
    Funk N; Becker S; Huber S; Brunner M; Buchner E
    BMC Neurosci; 2004 Apr; 5():16. PubMed ID: 15117418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic and molecular characterization of GAL4/UAS-mediated LARK expression.
    Schroeder AJ; Jackson FR
    Genesis; 2002; 34(1-2):91-4. PubMed ID: 12324957
    [No Abstract]   [Full Text] [Related]  

  • 8. New fluorescent protein reporters for use with the Drosophila Gal4 expression system and for vital detection of balancer chromosomes.
    Halfon MS; Gisselbrecht S; Lu J; Estrada B; Keshishian H; Michelson AM
    Genesis; 2002; 34(1-2):135-8. PubMed ID: 12324968
    [No Abstract]   [Full Text] [Related]  

  • 9. Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells.
    Jobin CM; Chen H; Lin AJ; Yacono PW; Igarashi J; Michel T; Golan DE
    Biochemistry; 2003 Oct; 42(40):11716-25. PubMed ID: 14529282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splice-activated UAS hairpin vector gives complete RNAi knockout of single or double target transcripts in Drosophila melanogaster.
    Reichhart JM; Ligoxygakis P; Naitza S; Woerfel G; Imler JL; Gubb D
    Genesis; 2002; 34(1-2):160-4. PubMed ID: 12324974
    [No Abstract]   [Full Text] [Related]  

  • 11. One thousand and one ways of making functionally similar transcriptional enhancers.
    Veitia RA
    Bioessays; 2008 Nov; 30(11-12):1052-7. PubMed ID: 18937349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time imaging of morphogenetic movements in Drosophila using Gal4-UAS-driven expression of GFP fused to the actin-binding domain of moesin.
    Dutta D; Bloor JW; Ruiz-Gomez M; VijayRaghavan K; Kiehart DP
    Genesis; 2002; 34(1-2):146-51. PubMed ID: 12324971
    [No Abstract]   [Full Text] [Related]  

  • 13. Overexpression of human genes in Drosophila melanogaster by using GAL4 UAS system.
    Ma XZ; Cai LJ; Wu XH; Zhao SY; Li CB; Deng KJ
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Jul; 35(7):597-600. PubMed ID: 12883627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons.
    Zhang W; Ge W; Wang Z
    Eur J Neurosci; 2007 Nov; 26(9):2405-16. PubMed ID: 17970730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-specific expression of the lark RNA-binding protein in Drosophila results in morphological and circadian behavioral phenotypes.
    Schroeder AJ; Genova GK; Roberts MA; Kleyner Y; Suh J; Jackson FR
    J Neurogenet; 2003; 17(2-3):139-69. PubMed ID: 14668198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical calcium imaging using DNA-encoded fluorescence sensors in transgenic fruit flies, Drosophila melanogaster.
    Dipt S; Riemensperger T; Fiala A
    Methods Mol Biol; 2014; 1071():195-206. PubMed ID: 24052390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression.
    Daborn PJ; Lumb C; Boey A; Wong W; Ffrench-Constant RH; Batterham P
    Insect Biochem Mol Biol; 2007 May; 37(5):512-9. PubMed ID: 17456446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Living synaptic vesicle marker: synaptotagmin-GFP.
    Zhang YQ; Rodesch CK; Broadie K
    Genesis; 2002; 34(1-2):142-5. PubMed ID: 12324970
    [No Abstract]   [Full Text] [Related]  

  • 19. Masculinization of XX Drosophila transgenic flies expressing the Ceratitis capitata DoublesexM isoform.
    Saccone G; Salvemini M; Pane A; Polito LC
    Int J Dev Biol; 2008; 52(8):1051-7. PubMed ID: 18956338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of apoptosis in Drosophila.
    McCall K; Peterson JS
    Methods Mol Biol; 2004; 282():191-205. PubMed ID: 15105566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.