BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 12325155)

  • 1. RWPV bioreactor mass transport: earth-based and in microgravity.
    Begley CM; Kleis SJ
    Biotechnol Bioeng; 2002 Nov; 80(4):465-76. PubMed ID: 12325155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor.
    Begley CM; Kleis SJ
    Biotechnol Bioeng; 2000 Oct; 70(1):32-40. PubMed ID: 10940861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model of the mass transport to the surface of animal cells cultured in a rotating bioreactor operated in micro gravity.
    Rivera-Solorio I; Kleis SJ
    Biotechnol Bioeng; 2006 Jun; 94(3):495-504. PubMed ID: 16586503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen transport and consumption by suspended cells in microgravity: a multiphase analysis.
    Kwon O; Devarakonda SB; Sankovic JM; Banerjee RK
    Biotechnol Bioeng; 2008 Jan; 99(1):99-107. PubMed ID: 17614322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinostats and bioreactors.
    Klaus DM
    Gravit Space Biol Bull; 2001 Jun; 14(2):55-64. PubMed ID: 11865869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors.
    Belfiore LA; Bonani W; Leoni M; Belfiore CJ
    Biophys Chem; 2009 May; 141(2-3):140-52. PubMed ID: 19261374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: macro-scale and micro-structured models.
    Cioffi M; Küffer J; Ströbel S; Dubini G; Martin I; Wendt D
    J Biomech; 2008 Oct; 41(14):2918-25. PubMed ID: 18789444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution.
    Lappa M
    Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of phosphate ion transfer to the surface of osteoblasts under normal gravity and simulated microgravity conditions.
    Mukundakrishnan K; Ayyaswamy PS; Risbud M; Hu HH; Shapiro IM
    Ann N Y Acad Sci; 2004 Nov; 1027():85-98. PubMed ID: 15644348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results.
    Cogoli M
    ASGSB Bull; 1992 Oct; 5(2):59-67. PubMed ID: 11537642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering.
    Williams KA; Saini S; Wick TM
    Biotechnol Prog; 2002; 18(5):951-63. PubMed ID: 12363345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid mechanics of a spinner-flask bioreactor.
    Sucosky P; Osorio DF; Brown JB; Neitzel GP
    Biotechnol Bioeng; 2004 Jan; 85(1):34-46. PubMed ID: 14705010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spaceflight bioreactor studies of cells and tissues.
    Freed LE; Vunjak-Novakovic G
    Adv Space Biol Med; 2002; 8():177-95. PubMed ID: 12951697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered bone culture in a perfusion bioreactor: a 2D computational study of stationary mass and momentum transport.
    Pierre J; Oddou C
    Comput Methods Biomech Biomed Engin; 2007 Dec; 10(6):429-38. PubMed ID: 17852175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling.
    Zhao F; Chella R; Ma T
    Biotechnol Bioeng; 2007 Feb; 96(3):584-95. PubMed ID: 16948169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel.
    Gao H; Ayyaswamy PS; Ducheyne P
    Microgravity Sci Technol; 1997; 10(3):154-65. PubMed ID: 11543416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubular bioreactor models that include Onsager-Curie scalar cross-phenomena to describe stress-dependent rates of cell proliferation.
    Belfiore LA; Karim MN; Belfiore CJ
    Biophys Chem; 2008 Jun; 135(1-3):41-50. PubMed ID: 18423963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor.
    Sytkowski AJ; Davis KL
    In Vitro Cell Dev Biol Anim; 2001 Feb; 37(2):79-83. PubMed ID: 11332741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia.
    Jessup JM; Goodwin TJ; Spaulding G
    J Cell Biochem; 1993 Mar; 51(3):290-300. PubMed ID: 8501131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The simulation of microgravity conditions on the ground.
    Albrecht-Buehler G
    ASGSB Bull; 1992 Oct; 5(2):3-10. PubMed ID: 11537639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.