These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12325308)

  • 1. Imagining stumbling inhibits motor-evoked potentials in the soleus muscle.
    Hiraoka K
    Int J Neurosci; 2002 Jun; 112(6):613-22. PubMed ID: 12325308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans.
    Lavoie BA; Devanne H; Capaday C
    J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic inhibition of soleus Ia afferents does not vary with center of pressure displacements during upright standing.
    Johannsson J; Duchateau J; Baudry S
    Neuroscience; 2015 Jul; 298():63-73. PubMed ID: 25869621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C
    J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical and spinal control of ankle joint muscles before and during gait initiation.
    Hiraoka K; Abe K
    Somatosens Mot Res; 2007 Sep; 24(3):127-33. PubMed ID: 17853055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of transmission in the corticospinal and group Ia afferent pathways to soleus motoneurons during bicycling.
    Pyndt HS; Nielsen JB
    J Neurophysiol; 2003 Jan; 89(1):304-14. PubMed ID: 12522181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential changes in corticospinal and Ia input to tibialis anterior and soleus motor neurones during voluntary contraction in man.
    Morita H; Olivier E; Baumgarten J; Petersen NT; Christensen LO; Nielsen JB
    Acta Physiol Scand; 2000 Sep; 170(1):65-76. PubMed ID: 10971225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of long-term bed rest on H-reflex and motor evoked potential in the human soleus muscle during standing.
    Yamanaka K; Yamamoto S; Nakazawa K; Yano H; Suzuki Y; Fukunaga T
    Neurosci Lett; 1999 May; 266(2):101-4. PubMed ID: 10353337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulations of soleus H-reflex excitability during gait initiation: central versus peripheral influences.
    Trimble MH; Brunt D; Jeon HS; Kim HD
    Muscle Nerve; 2001 Oct; 24(10):1371-9. PubMed ID: 11562919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of motor cortex inhibition during motor imagery.
    Chong BW; Stinear CM
    J Neurophysiol; 2017 Apr; 117(4):1776-1784. PubMed ID: 28123007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks.
    Mouthon A; Ruffieux J; Wälchli M; Keller M; Taube W
    Neuroscience; 2015 Sep; 303():535-43. PubMed ID: 26192097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplitude modulation of the soleus H reflex in the human during active and passive stepping movements.
    Brooke JD; Cheng J; Misiaszek JE; Lafferty K
    J Neurophysiol; 1995 Jan; 73(1):102-11. PubMed ID: 7714556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the origin of the soleus H-reflex modulation pattern during human walking and its task-dependent differences.
    Schneider C; Lavoie BA; Capaday C
    J Neurophysiol; 2000 May; 83(5):2881-90. PubMed ID: 10805685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitation of motor evoked potentials and H-reflexes of flexor carpi radialis muscle induced by voluntary teeth clenching.
    Sugawara K; Kasai T
    Hum Mov Sci; 2002 Jul; 21(2):203-12. PubMed ID: 12167299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of tetanic stimulation of the unilateral tibial nerve before transcranial stimulation can augment the amplitudes of myogenic motor-evoked potentials from the muscles in the bilateral upper and lower limbs.
    Hayashi H; Kawaguchi M; Yamamoto Y; Inoue S; Koizumi M; Ueda Y; Takakura Y; Furuya H
    Anesth Analg; 2008 Jul; 107(1):215-20. PubMed ID: 18635490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles.
    Kido Thompson A; Stein RB
    Exp Brain Res; 2004 Dec; 159(4):491-500. PubMed ID: 15243732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent modulation of corticospinal and group I afferents pathways during upright standing.
    Baudry S; Duchateau J
    Neuroscience; 2014 Sep; 275():162-9. PubMed ID: 24952331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticospinal excitability during walking in humans with absent and partial body weight support.
    Knikou M; Hajela N; Mummidisetty CK
    Clin Neurophysiol; 2013 Dec; 124(12):2431-8. PubMed ID: 23810634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical involvement in anticipatory postural reactions in man.
    Petersen TH; Rosenberg K; Petersen NC; Nielsen JB
    Exp Brain Res; 2009 Feb; 193(2):161-71. PubMed ID: 18956177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.