These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 123290)
1. Cold-contracture and ATP-turnover in the red and white musculature of the pig, post mortem. Bendall JR J Sci Food Agric; 1975 Jan; 26(1):55-71. PubMed ID: 123290 [No Abstract] [Full Text] [Related]
2. Metabolic and functional properties of skeletal muscle in relation to meat quality. Heffron JJ J S Afr Vet Assoc; 1973 Jun; 44(2):119-29. PubMed ID: 4272268 [No Abstract] [Full Text] [Related]
3. Adenosinetriphosphatase (ATPase) activity of myofibrils prepared from pre-rigor and from rigor rat skeletal muscle. Reville WJ; Meade GA Biochem Soc Trans; 1991 Feb; 19(1):38S. PubMed ID: 1828049 [No Abstract] [Full Text] [Related]
4. [Physiological and morphological studies of the mechanism and development of rigor mortis (author's transl)]. Krause D; Zett L Z Rechtsmed; 1973 Jun; 72(4):245-54. PubMed ID: 4787795 [No Abstract] [Full Text] [Related]
6. Onset of rigor mortis is earlier in red muscle than in white muscle. Kobayashi M; Takatori T; Nakajima M; Sakurada K; Hatanaka K; Ikegaya H; Matsuda Y; Iwase H Int J Legal Med; 2000; 113(4):240-3. PubMed ID: 10929241 [TBL] [Abstract][Full Text] [Related]
7. Energetics and "efficiency" in the isolated contractile machinery of an insect fibrillar muscle at various frequencies of oscillation. Steiger GJ; Rüegg JC Pflugers Arch; 1969; 307(1):1-21. PubMed ID: 4240315 [No Abstract] [Full Text] [Related]
8. [Primary dilatation of animal muscle in the early post mortem period]. Döring G; Forster B; Kauls HP Z Rechtsmed; 1970; 67(2):87-98. PubMed ID: 5495664 [No Abstract] [Full Text] [Related]
10. Evidence for a relationship between ATP hydrolysis and changes in extracellular space and fibre diameter during rigor development in skeletal muscle. Heffron JJ; Hegarty PV Comp Biochem Physiol A Comp Physiol; 1974 Sep; 49(1A):43-56. PubMed ID: 4153729 [No Abstract] [Full Text] [Related]
11. The coupling of poweroutput and myofibrillar ATPase activity in glycerol-extracted insect fibrillar muscle at varying amplitude of ATP-driven oscillation. Rüegg JC; Stumpf H Pflugers Arch; 1969; 305(1):21-33. PubMed ID: 4236957 [No Abstract] [Full Text] [Related]
12. Coupling of ATP-hydrolysis with contraction of isolated myofibrillar fragments. Nakamura H; Mori T; Tonomura Y J Biochem; 1965 Dec; 58(6):582-6. PubMed ID: 4222508 [No Abstract] [Full Text] [Related]
13. A comparison of shortening and Z line degradation in post-mortem bovine, porcine, and rabbit muscle. Henderson DW; Goll DE; Stromer MH Am J Anat; 1970 May; 128(1):117-35. PubMed ID: 4914349 [No Abstract] [Full Text] [Related]
15. Single turnovers of adenosine 5'-triphosphate by myofibrils and actomyosin subfragment 1. Sleep JA Biochemistry; 1981 Aug; 20(17):5043-51. PubMed ID: 6457629 [TBL] [Abstract][Full Text] [Related]
16. Probing the coupling of Ca2+ and rigor activation of rabbit psoas myofibrillar ATPase with ethylene glycol. Stehle R; Lionne C; Travers F; Barman T J Muscle Res Cell Motil; 1998 May; 19(4):381-92. PubMed ID: 9635281 [TBL] [Abstract][Full Text] [Related]
17. Myofibrillar ATP-splitting in the elementary contractile cycle of an insect flight muscle. Breull W Experientia; 1971 Jul; 27(7):779-81. PubMed ID: 4257945 [No Abstract] [Full Text] [Related]
18. Does the sequence of onset of rigor mortis depend on the proportion of muscle fibre types and on intra-muscular glycogen content? Kobayashi M; Takatori T; Nakajima M; Saka K; Iwase H; Nagao M; Niijima H; Matsuda Y Int J Legal Med; 1999; 112(3):167-71. PubMed ID: 10335879 [TBL] [Abstract][Full Text] [Related]