These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 123290)

  • 21. Myofibrillar ATPase activity and mechanical performance of skinned fibres from rabbit psoas muscle.
    Potma EJ; Stienen GJ; Barends JP; Elzinga G
    J Physiol; 1994 Jan; 474(2):303-17. PubMed ID: 8006817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The shortening of rabbit muscles during rigor mortis; its relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction.
    BENDALL JR
    J Physiol; 1951 Jun; 114(1-2):71-88. PubMed ID: 14861784
    [No Abstract]   [Full Text] [Related]  

  • 23. Post-mortem electrical stimulation of muscle and its effects on sarcoplasmic reticulum adenosine triphosphatase.
    Tume RK
    Aust J Biol Sci; 1979 Apr; 32(2):163-76. PubMed ID: 159039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Demonstration of mechanochemical coupling in systems containing actin, atp and non-aggregating active myosin derivatives.
    Oplatka A; Gadasi H; Tirosh R; Lamed Y; Muhlrad A; Liron N
    J Mechanochem Cell Motil; 1974 Mar; 2(4):295-306. PubMed ID: 4277009
    [No Abstract]   [Full Text] [Related]  

  • 25. [Regulation of the contraction-relaxation cycle in the skeletal muscle].
    Dabrowska R; Drabikowski W
    Postepy Biochem; 1970; 16(3):405-20. PubMed ID: 5476528
    [No Abstract]   [Full Text] [Related]  

  • 26. Actomyosin ATPase activity of middle ear muscles in the cat.
    Teig E; Dahl HA
    Histochemie; 1972; 29(1):1-7. PubMed ID: 4259606
    [No Abstract]   [Full Text] [Related]  

  • 27. Electrical stimulation of rabbit and lamb carcasses.
    Bendall JR
    J Sci Food Agric; 1976 Sep; 27(9):819-26. PubMed ID: 9718
    [No Abstract]   [Full Text] [Related]  

  • 28. Determination of adenosine phosphates in rat gastrocnemius at various postmortem intervals using high performance liquid chromatography.
    Huang H; Yan Y; Zuo Z; Yang L; Li B; Song Y; Liao L
    J Forensic Sci; 2010 Sep; 55(5):1362-6. PubMed ID: 20533990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding of myosin to actin in myofibrils during ATP hydrolysis.
    Duong AM; Reisler E
    Biochemistry; 1989 Feb; 28(3):1307-13. PubMed ID: 2523735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does phosphate release limit the ATPases of soleus myofibrils? Evidence that (A)M. ADP.Pi states predominate on the cross-bridge cycle.
    Iorga B; Candau R; Travers F; Barman T; Lionne C
    J Muscle Res Cell Motil; 2004; 25(4-5):367-78. PubMed ID: 15548866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Consumption of oxygen by the muscles of beef animals and related species and its effect on the colour of meat. I. Oxygen consumption in pre-rigor muscle.
    Bendall JR
    J Sci Food Agric; 1972 Jan; 23(1):61-72. PubMed ID: 4260410
    [No Abstract]   [Full Text] [Related]  

  • 32. Experimental evaluation of rigor mortis. I. Histochemical analysis of rat skeletal muscle in the early post-mortem period.
    Krompecher T; Krompecher-Kiss E
    Forensic Sci Int; 1978; 12(2):89-95. PubMed ID: 153263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The biochemical mechanism of biphasic muscular activity (some results and new data)].
    Ivanov II
    Usp Sovrem Biol; 1968; 66(1):1-12. PubMed ID: 4245061
    [No Abstract]   [Full Text] [Related]  

  • 34. [Mechanical properties of fresh and postmortem human muscle fibers and whole muscles].
    Zink P
    Z Rechtsmed; 1972; 70(3):163-77. PubMed ID: 5047583
    [No Abstract]   [Full Text] [Related]  

  • 35. Dependence of adenosine triphosphatase activity of rabbit psoas muscle fibres and myofibrils on substrate concentration.
    Glyn H; Sleep J
    J Physiol; 1985 Aug; 365():259-76. PubMed ID: 3162018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inosine-5'-monophosphate is a candidate agent to resolve rigor mortis of skeletal muscle.
    Matsuishi M; Tsuji M; Yamaguchi M; Kitamura N; Tanaka S; Nakamura Y; Okitani A
    Anim Sci J; 2016 Nov; 87(11):1407-1412. PubMed ID: 26875616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteolytic and physicochemical mechanisms involved in meat texture development.
    Ouali A
    Biochimie; 1992 Mar; 74(3):251-65. PubMed ID: 1535227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Consumption of oxygen by the muscles of beef animals and related species. II. Consumption of oxygen by post-rigor muscle.
    Bendall JR; Taylor AA
    J Sci Food Agric; 1972 Jun; 23(6):707-19. PubMed ID: 4339650
    [No Abstract]   [Full Text] [Related]  

  • 39. Nucleotide binding to myosin in calcium activated muscle.
    Marston SB; Tregear RT
    Biochim Biophys Acta; 1974 Mar; 333(3):581-4. PubMed ID: 4277060
    [No Abstract]   [Full Text] [Related]  

  • 40. Structure of insect fibrillar flight muscle in the presence and absence of ATP.
    Miller A; Tregear RT
    J Mol Biol; 1972 Sep; 70(1):85-104. PubMed ID: 5073353
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.