These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 12350116)
1. Prediction of electrophoretic mobilities of alkyl- and alkenylpyridines in capillary electrophoresis using artificial neural networks. Jalali-Heravi M; Garkani-Nejad Z J Chromatogr A; 2002 Sep; 971(1-2):207-15. PubMed ID: 12350116 [TBL] [Abstract][Full Text] [Related]
2. Prediction of electrophoretic mobilities of sulfonamides in capillary zone electrophoresis using artificial neural networks. Jalali-Heravi M; Garkani-Nejad Z J Chromatogr A; 2001 Aug; 927(1-2):211-8. PubMed ID: 11572391 [TBL] [Abstract][Full Text] [Related]
3. Prediction of electrophoretic mobilities of peptides in capillary zone electrophoresis by quantitative structure-mobility relationships using the Offord model and artificial neural networks. Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG Electrophoresis; 2005 May; 26(10):1874-85. PubMed ID: 15825217 [TBL] [Abstract][Full Text] [Related]
4. Quantitative structure property relationship study of the electrophoretic mobilities of some benzoic acids derivatives in different carrier electrolyte compositions. Fatemi MH; Goudarzi N Electrophoresis; 2005 Aug; 26(15):2968-73. PubMed ID: 16007694 [TBL] [Abstract][Full Text] [Related]
5. Artificial neural network modeling of peptide mobility and peptide mapping in capillary zone electrophoresis. Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG J Chromatogr A; 2005 Nov; 1096(1-2):58-68. PubMed ID: 16216258 [TBL] [Abstract][Full Text] [Related]
6. Prediction of selectivity coefficients of a theophylline-selective electrode using MLR and ANN. Riahi S; Mousavi MF; Shamsipur M Talanta; 2006 May; 69(3):736-40. PubMed ID: 18970631 [TBL] [Abstract][Full Text] [Related]
7. Modeling the electrophoretic mobility of beta-blockers in capillary electrophoresis using artificial neural networks. Jouyban A; Majidi MR; Asadpour-Zeynali K Farmaco; 2005 Mar; 60(3):255-9. PubMed ID: 15784246 [TBL] [Abstract][Full Text] [Related]
8. Modeling the electrophoretic mobility of analytes in binary solvent electrolyte systems in capillary electrophoresis using an artificial neural network. Jouyban A; Majidi MR; Altria KD; Clark BJ; Asadpour-Zeynali K Pharmazie; 2005 Sep; 60(9):656-60. PubMed ID: 16222863 [TBL] [Abstract][Full Text] [Related]
9. Artificial neural network modeling of Kováts retention indices for noncyclic and monocyclic terpenes. Jalali-Heravi M; Fatemi MH J Chromatogr A; 2001 Apr; 915(1-2):177-83. PubMed ID: 11358247 [TBL] [Abstract][Full Text] [Related]
10. Prediction of the electrophoretic mobilities of some carboxylic acids from theoretically derived descriptors. Fatemi MH J Chromatogr A; 2004 Jun; 1038(1-2):231-7. PubMed ID: 15233538 [TBL] [Abstract][Full Text] [Related]
11. Use of self-training artificial neural networks in modeling of gas chromatographic relative retention times of a variety of organic compounds. Jalali-Heravi M; Garkani-Nejad Z J Chromatogr A; 2002 Feb; 945(1-2):173-84. PubMed ID: 11860134 [TBL] [Abstract][Full Text] [Related]
12. Development of migration models for acids in capillary electrophoresis using heuristic and radial basis function neural network methods. Xue C; Yao X; Liu H; Liu M; Hu Z; Fan B Electrophoresis; 2005 Jun; 26(11):2154-64. PubMed ID: 15852353 [TBL] [Abstract][Full Text] [Related]
13. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks. Gupta VK; Khani H; Ahmadi-Roudi B; Mirakhorli S; Fereyduni E; Agarwal S Talanta; 2011 Jan; 83(3):1014-22. PubMed ID: 21147352 [TBL] [Abstract][Full Text] [Related]
14. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes. Arulsudar N; Subramanian N; Muthy RS J Pharm Pharm Sci; 2005 Aug; 8(2):243-58. PubMed ID: 16124936 [TBL] [Abstract][Full Text] [Related]
15. Artificial neural networks as alternative tool for minimizing error predictions in manufacturing ultradeformable nanoliposome formulations. León Blanco JM; González-R PL; Arroyo García CM; Cózar-Bernal MJ; Calle Suárez M; Canca Ortiz D; Rabasco Álvarez AM; González Rodríguez ML Drug Dev Ind Pharm; 2018 Jan; 44(1):135-143. PubMed ID: 28967285 [TBL] [Abstract][Full Text] [Related]
16. Large-scale prediction of cationic metabolite identity and migration time in capillary electrophoresis mass spectrometry using artificial neural networks. Sugimoto M; Kikuchi S; Arita M; Soga T; Nishioka T; Tomita M Anal Chem; 2005 Jan; 77(1):78-84. PubMed ID: 15623281 [TBL] [Abstract][Full Text] [Related]
17. Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography. Fatemi MH; Abraham MH; Poole CF J Chromatogr A; 2008 May; 1190(1-2):241-52. PubMed ID: 18395736 [TBL] [Abstract][Full Text] [Related]
18. Prediction of gas-to-olive oil partition coefficients of organic compounds using an artificial neural network. Golmohammadi H; Konoz E; Dashtbozorgi Z Anal Sci; 2009 Sep; 25(9):1137-42. PubMed ID: 19745543 [TBL] [Abstract][Full Text] [Related]
19. Use of artificial neural networks in a QSAR study of anti-HIV activity for a large group of HEPT derivatives. Jalali-Heravi M; Parastar F J Chem Inf Comput Sci; 2000; 40(1):147-54. PubMed ID: 10661561 [TBL] [Abstract][Full Text] [Related]
20. Modeling GC-ECD retention times of pentafluorobenzyl derivatives of phenol by using artificial neural networks. Asadpour-Zeynali K; Jalili-Jahani N J Sep Sci; 2008 Dec; 31(21):3788-95. PubMed ID: 18956382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]