These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12350121)

  • 1. Characterizing electroosmotic flow in microfluidic devices.
    Gaudioso J; Craighead HG
    J Chromatogr A; 2002 Sep; 971(1-2):249-53. PubMed ID: 12350121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant-induced electroosmotic flow in microfluidic capillaries.
    Azadi G; Tripathi A
    Electrophoresis; 2012 Jul; 33(14):2094-101. PubMed ID: 22821484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of pH*-value of methanolic electrolytes on electroosmotic flow in hydrophilic coated capillaries.
    Belder D; Elke K; Husmann H
    J Chromatogr A; 2000 Jan; 868(1):63-71. PubMed ID: 10677080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of electroosmotic flow in zirconia-coated capillaries.
    de Bellaistre MC; Mathieu O; Randon J; Rocca JL
    J Chromatogr A; 2002 Sep; 971(1-2):199-205. PubMed ID: 12350115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamically formed admicelle layer to control the amplitude of cathodic electroosmotic flow.
    Erny GL; Gonçalves BM; Esteves VI
    J Chromatogr A; 2012 Sep; 1256():271-5. PubMed ID: 22901301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring electroosmotic flow in microchips and capillaries.
    Gilman SD; Chapman PJ
    Methods Mol Biol; 2006; 339():187-202. PubMed ID: 16790874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic flow reversal for the determination of inorganic anions by capillary electrophoresis with methanol-water buffers.
    Diress AG; Lucy CA
    J Chromatogr A; 2004 Feb; 1027(1-2):185-91. PubMed ID: 14971502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems.
    Szekely L; Freitag R
    Electrophoresis; 2005 May; 26(10):1928-39. PubMed ID: 15832304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated capillaries and microchips.
    Badal MY; Wong M; Chiem N; Salimi-Moosavi H; Harrison DJ
    J Chromatogr A; 2002 Feb; 947(2):277-86. PubMed ID: 11883661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips.
    García CD; Dressen BM; Henderson A; Henry CS
    Electrophoresis; 2005 Feb; 26(3):703-9. PubMed ID: 15690423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental studies of electroosmotic flow dynamics in microfabricated devices during current monitoring experiments.
    Pittman JL; Henry CS; Gilman SD
    Anal Chem; 2003 Feb; 75(3):361-70. PubMed ID: 12585459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the SDS-induced electroosmotic flow in micellar electrokinetic chromatography with cationic polyelectrolyte-coated capillaries.
    Pranaityte B; Padarauskas A
    Electrophoresis; 2006 May; 27(10):1915-21. PubMed ID: 16596708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of electroosmotic flow in nonaqueous capillary electrophoresis by polymer capillary coatings.
    Steiner F; Hassel M
    Electrophoresis; 2003 Jan; 24(3):399-407. PubMed ID: 12569532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate.
    Locascio LE; Perso CE; Lee CS
    J Chromatogr A; 1999 Oct; 857(1-2):275-84. PubMed ID: 10536846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices.
    Rodríguez I; Chandrasekhar N
    Electrophoresis; 2005 Mar; 26(6):1114-21. PubMed ID: 15706573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic T-form mixer utilizing switching electroosmotic flow.
    Lin CH; Fu LM; Chien YS
    Anal Chem; 2004 Sep; 76(18):5265-72. PubMed ID: 15362882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices.
    McKnight TE; Culbertson CT; Jacobson SC; Ramsey JM
    Anal Chem; 2001 Aug; 73(16):4045-9. PubMed ID: 11534734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox modulation of electroosmotic flow in a carbon nanotube membrane.
    Miller SA; Martin CR
    J Am Chem Soc; 2004 May; 126(20):6226-7. PubMed ID: 15149208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.