These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 12351160)
1. Well-done red meat, metabolic phenotypes and colorectal cancer in Hawaii. Le Marchand L; Hankin JH; Pierce LM; Sinha R; Nerurkar PV; Franke AA; Wilkens LR; Kolonel LN; Donlon T; Seifried A; Custer LJ; Lum-Jones A; Chang W Mutat Res; 2002 Sep; 506-507():205-14. PubMed ID: 12351160 [TBL] [Abstract][Full Text] [Related]
2. Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk. Le Marchand L; Hankin JH; Wilkens LR; Pierce LM; Franke A; Kolonel LN; Seifried A; Custer LJ; Chang W; Lum-Jones A; Donlon T Cancer Epidemiol Biomarkers Prev; 2001 Dec; 10(12):1259-66. PubMed ID: 11751443 [TBL] [Abstract][Full Text] [Related]
3. Heterocyclic amine intake, smoking, cytochrome P450 1A2 and N-acetylation phenotypes, and risk of colorectal adenoma in a multiethnic population. Voutsinas J; Wilkens LR; Franke A; Vogt TM; Yokochi LA; Decker R; Le Marchand L Gut; 2013 Mar; 62(3):416-22. PubMed ID: 22628494 [TBL] [Abstract][Full Text] [Related]
4. Genetic polymorphisms in heterocyclic amine metabolism and risk of colorectal adenomas. Ishibe N; Sinha R; Hein DW; Kulldorff M; Strickland P; Fretland AJ; Chow WH; Kadlubar FF; Lang NP; Rothman N Pharmacogenetics; 2002 Mar; 12(2):145-50. PubMed ID: 11875368 [TBL] [Abstract][Full Text] [Related]
5. Breast cancer, heterocyclic aromatic amines from meat and N-acetyltransferase 2 genotype. Delfino RJ; Sinha R; Smith C; West J; White E; Lin HJ; Liao SY; Gim JS; Ma HL; Butler J; Anton-Culver H Carcinogenesis; 2000 Apr; 21(4):607-15. PubMed ID: 10753193 [TBL] [Abstract][Full Text] [Related]
6. Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study. Nöthlings U; Yamamoto JF; Wilkens LR; Murphy SP; Park SY; Henderson BE; Kolonel LN; Le Marchand L Cancer Epidemiol Biomarkers Prev; 2009 Jul; 18(7):2098-106. PubMed ID: 19549810 [TBL] [Abstract][Full Text] [Related]
7. Association between NAT2, CYP1A1, and CYP1A2 genotypes, heterocyclic aromatic amines, and prostate cancer risk: a case control study in Japan. Koda M; Iwasaki M; Yamano Y; Lu X; Katoh T Environ Health Prev Med; 2017 Oct; 22(1):72. PubMed ID: 29165164 [TBL] [Abstract][Full Text] [Related]
8. Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption. Lilla C; Verla-Tebit E; Risch A; Jäger B; Hoffmeister M; Brenner H; Chang-Claude J Cancer Epidemiol Biomarkers Prev; 2006 Jan; 15(1):99-107. PubMed ID: 16434594 [TBL] [Abstract][Full Text] [Related]
9. Carcinogen metabolism genes, red meat and poultry intake, and colorectal cancer risk. Wang J; Joshi AD; Corral R; Siegmund KD; Marchand LL; Martinez ME; Haile RW; Ahnen DJ; Sandler RS; Lance P; Stern MC Int J Cancer; 2012 Apr; 130(8):1898-907. PubMed ID: 21618522 [TBL] [Abstract][Full Text] [Related]
10. Genetic variation in the bioactivation pathway for polycyclic hydrocarbons and heterocyclic amines in relation to risk of colorectal neoplasia. Wang H; Yamamoto JF; Caberto C; Saltzman B; Decker R; Vogt TM; Yokochi L; Chanock S; Wilkens LR; Le Marchand L Carcinogenesis; 2011 Feb; 32(2):203-9. PubMed ID: 21081473 [TBL] [Abstract][Full Text] [Related]
11. N-Acetyltransferase-2 genetic polymorphism, well-done meat intake, and breast cancer risk among postmenopausal women. Deitz AC; Zheng W; Leff MA; Gross M; Wen WQ; Doll MA; Xiao GH; Folsom AR; Hein DW Cancer Epidemiol Biomarkers Prev; 2000 Sep; 9(9):905-10. PubMed ID: 11008907 [TBL] [Abstract][Full Text] [Related]
12. Urinary mutagenesis and fried red meat intake: influence of cooking temperature, phenotype, and genotype of metabolizing enzymes in a controlled feeding study. Peters U; Sinha R; Bell DA; Rothman N; Grant DJ; Watson MA; Kulldorff M; Brooks LR; Warren SH; DeMarini DM Environ Mol Mutagen; 2004; 43(1):53-74. PubMed ID: 14743346 [TBL] [Abstract][Full Text] [Related]
13. Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Butler MA; Lang NP; Young JF; Caporaso NE; Vineis P; Hayes RB; Teitel CH; Massengill JP; Lawsen MF; Kadlubar FF Pharmacogenetics; 1992 Jun; 2(3):116-27. PubMed ID: 1306111 [TBL] [Abstract][Full Text] [Related]
14. Meat intake and bladder cancer in a prospective study: a role for heterocyclic aromatic amines? Lumbreras B; Garte S; Overvad K; Tjonneland A; Clavel-Chapelon F; Linseisen JP; Boeing H; Trichopoulou A; Palli D; Peluso M; Krogh V; Tumino R; Panico S; Bueno-De-Mesquita HB; Peeters PH; Lund E; Martinez C; Dorronsoro M; Barricarte A; Chirlaque MD; Quiros JR; Berglund G; Hallmans G; Day NE; Key TJ; Saracci R; Kaaks R; Malaveille C; Ferrari P; Boffetta P; Norat T; Riboli E; Gonzalez CA; Vineis P Cancer Causes Control; 2008 Aug; 19(6):649-56. PubMed ID: 18264785 [TBL] [Abstract][Full Text] [Related]
15. The CYP1A2-164A-->C polymorphism (CYP1A2*1F) is associated with the risk for colorectal adenomas in humans. Moonen H; Engels L; Kleinjans J; Kok Td Cancer Lett; 2005 Nov; 229(1):25-31. PubMed ID: 16157215 [TBL] [Abstract][Full Text] [Related]
16. Investigation of interaction between N-acetyltransferase 2 and heterocyclic amines as potential risk factors for colorectal cancer. Barrett JH; Smith G; Waxman R; Gooderham N; Lightfoot T; Garner RC; Augustsson K; Wolf CR; Bishop DT; Forman D; Carcinogenesis; 2003 Feb; 24(2):275-82. PubMed ID: 12584178 [TBL] [Abstract][Full Text] [Related]
17. Interaction between Red Meat Intake and NAT2 Genotype in Increasing the Risk of Colorectal Cancer in Japanese and African Americans. Wang H; Iwasaki M; Haiman CA; Kono S; Wilkens LR; Keku TO; Berndt SI; Tsugane S; Le Marchand L PLoS One; 2015; 10(12):e0144955. PubMed ID: 26683305 [TBL] [Abstract][Full Text] [Related]
18. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk-results from the EPIC cohort study. Dik VK; Bueno-de-Mesquita HB; Van Oijen MG; Siersema PD; Uiterwaal CS; Van Gils CH; Van Duijnhoven FJ; Cauchi S; Yengo L; Froguel P; Overvad K; Bech BH; Tjønneland A; Olsen A; Boutron-Ruault MC; Racine A; Fagherazzi G; Kühn T; Campa D; Boeing H; Aleksandrova K; Trichopoulou A; Peppa E; Oikonomou E; Palli D; Grioni S; Vineis P; Tumino R; Panico S; Peeters PH; Weiderpass E; Engeset D; Braaten T; Dorronsoro M; Chirlaque MD; Sánchez MJ; Barricarte A; Zamora-Ros R; Argüelles M; Jirström K; Wallström P; Nilsson LM; Ljuslinder I; Travis RC; Khaw KT; Wareham N; Freisling H; Licaj I; Jenab M; Gunter MJ; Murphy N; Romaguera-Bosch D; Riboli E Int J Cancer; 2014 Jul; 135(2):401-12. PubMed ID: 24318358 [TBL] [Abstract][Full Text] [Related]
19. Prospective study of N-acetyltransferase-2 genotypes, meat intake, smoking and risk of colorectal cancer. Chan AT; Tranah GJ; Giovannucci EL; Willett WC; Hunter DJ; Fuchs CS Int J Cancer; 2005 Jul; 115(4):648-52. PubMed ID: 15700302 [TBL] [Abstract][Full Text] [Related]
20. Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study. Tiemersma EW; Kampman E; Bueno de Mesquita HB; Bunschoten A; van Schothorst EM; Kok FJ; Kromhout D Cancer Causes Control; 2002 May; 13(4):383-93. PubMed ID: 12074508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]