BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12351213)

  • 1. Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart.
    Maklashina E; Sher Y; Zhou HZ; Gray MO; Karliner JS; Cecchini G
    Biochim Biophys Acta; 2002 Oct; 1556(1):6-12. PubMed ID: 12351213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. evidence for the slow active/inactive transition.
    Grivennikova VG; Kapustin AN; Vinogradov AD
    J Biol Chem; 2001 Mar; 276(12):9038-44. PubMed ID: 11124957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of oxygen on activation state of complex I and lack of oxaloacetate inhibition of complex II in Langendorff perfused rat heart.
    Maklashina E; Kotlyar AB; Karliner JS; Cecchini G
    FEBS Lett; 2004 Jan; 556(1-3):64-8. PubMed ID: 14706827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Sled VD; Vinogradov AD
    Biochim Biophys Acta; 1992 Jan; 1098(2):144-50. PubMed ID: 1730007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa.
    Grivennikova VG; Serebryanaya DV; Isakova EP; Belozerskaya TA; Vinogradov AD
    Biochem J; 2003 Feb; 369(Pt 3):619-26. PubMed ID: 12379145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential-display polymerase chain reaction identifies nicotinamide adenine dinucleotide-ubiquinone oxidoreductase as an ischemia/reperfusion-regulated gene in cardiomyocytes.
    Yeh CH; Pang JH; Wu YC; Wang YC; Chu JJ; Lin PJ
    Chest; 2004 Jan; 125(1):228-35. PubMed ID: 14718445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective inhibition of deactivated mitochondrial complex I by biguanides.
    Matsuzaki S; Humphries KM
    Biochemistry; 2015 Mar; 54(11):2011-21. PubMed ID: 25719498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Evidence for stoicheiometric association.
    Ragan CI; Heron C
    Biochem J; 1978 Sep; 174(3):783-90. PubMed ID: 215122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S-nitrosation of mitochondrial complex I depends on its structural conformation.
    Galkin A; Moncada S
    J Biol Chem; 2007 Dec; 282(52):37448-53. PubMed ID: 17956863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Restoration of ubiquinone-pool behaviour.
    Heron C; Ragan CI; Trumpower BL
    Biochem J; 1978 Sep; 174(3):791-800. PubMed ID: 215123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospray ionization mass spectrometric analysis of subunits of NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
    Fearnley IM; Skehel JM; Walker JE
    Biochem Soc Trans; 1994 May; 22(2):551-5. PubMed ID: 7958365
    [No Abstract]   [Full Text] [Related]  

  • 12. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischaemic damage.
    Veitch K; Hombroeckx A; Caucheteux D; Pouleur H; Hue L
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):709-15. PubMed ID: 1346958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New evidence for the multiplicity of ubiquinone- and inhibitor-binding sites in the mitochondrial complex I.
    Tormo JR; Estornell E
    Arch Biochem Biophys; 2000 Sep; 381(2):241-6. PubMed ID: 11032411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active/de-active transition of respiratory complex I in bacteria, fungi, and animals.
    Maklashina E; Kotlyar AB; Cecchini G
    Biochim Biophys Acta; 2003 Sep; 1606(1-3):95-103. PubMed ID: 14507430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid ubiquinone: novel inhibitor of mitochondrial complex I.
    Yabunaka H; Kenmochi A; Nakatogawa Y; Sakamoto K; Miyoshi H
    Biochim Biophys Acta; 2002 Dec; 1556(2-3):106-12. PubMed ID: 12460667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effect of palmitate on the mitochondrial NADH:ubiquinone oxidoreductase (complex I) as related to the active-de-active enzyme transition.
    Loskovich MV; Grivennikova VG; Cecchini G; Vinogradov AD
    Biochem J; 2005 May; 387(Pt 3):677-83. PubMed ID: 15571492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nuclear encoded subunits of complex I from bovine heart mitochondria.
    Hirst J; Carroll J; Fearnley IM; Shannon RJ; Walker JE
    Biochim Biophys Acta; 2003 Jul; 1604(3):135-50. PubMed ID: 12837546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.