These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12351229)

  • 1. The ribulose monophosphate pathway operon encoding formaldehyde fixation in a thermotolerant methylotroph, Bacillus brevis S1.
    Yurimoto H; Hirai R; Yasueda H; Mitsui R; Sakai Y; Kato N
    FEMS Microbiol Lett; 2002 Sep; 214(2):189-93. PubMed ID: 12351229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel operon encoding formaldehyde fixation: the ribulose monophosphate pathway in the gram-positive facultative methylotrophic bacterium Mycobacterium gastri MB19.
    Mitsui R; Sakai Y; Yasueda H; Kato N
    J Bacteriol; 2000 Feb; 182(4):944-8. PubMed ID: 10648518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression.
    Yasueda H; Kawahara Y; Sugimoto S
    J Bacteriol; 1999 Dec; 181(23):7154-60. PubMed ID: 10572115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic organization and biochemistry of the ribulose monophosphate pathway and its application in biotechnology.
    Yurimoto H; Kato N; Sakai Y
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):407-16. PubMed ID: 19593556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The archaeon Pyrococcus horikoshii possesses a bifunctional enzyme for formaldehyde fixation via the ribulose monophosphate pathway.
    Orita I; Yurimoto H; Hirai R; Kawarabayasi Y; Sakai Y; Kato N
    J Bacteriol; 2005 Jun; 187(11):3636-42. PubMed ID: 15901685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis.
    Orita I; Sato T; Yurimoto H; Kato N; Atomi H; Imanaka T; Sakai Y
    J Bacteriol; 2006 Jul; 188(13):4698-704. PubMed ID: 16788179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Bacterial ribulose monophosphate pathway and formaldehyde assimilation].
    Song ZB; Chen LM; Li KZ; Pan ZB
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):168-72. PubMed ID: 17436647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifunctional enzyme fusion of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase.
    Orita I; Sakamoto N; Kato N; Yurimoto H; Sakai Y
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):439-45. PubMed ID: 17520247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
    Leßmeier L; Pfeifenschneider J; Carnicer M; Heux S; Portais JC; Wendisch VF
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10163-76. PubMed ID: 26276544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The physiological role of the ribulose monophosphate pathway in bacteria and archaea.
    Kato N; Yurimoto H; Thauer RK
    Biosci Biotechnol Biochem; 2006 Jan; 70(1):10-21. PubMed ID: 16428816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of an HPS/PHI fusion enzyme from Mycobacterium gastri in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde.
    Song Z; Orita I; Yin F; Yurimoto H; Kato N; Sakai Y; Izui K; Li K; Chen L
    Biotechnol Lett; 2010 Oct; 32(10):1541-8. PubMed ID: 20549541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formaldehyde fixation contributes to detoxification for growth of a nonmethylotroph, Burkholderia cepacia TM1, on vanillic acid.
    Mitsui R; Kusano Y; Yurimoto H; Sakai Y; Kato N; Tanaka M
    Appl Environ Microbiol; 2003 Oct; 69(10):6128-32. PubMed ID: 14532071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of the genes involved in the ribulose monophosphate pathway in an obligate methylotrophic bacterium, Methylomonas aminofaciens 77a.
    Sakai Y; Mitsui R; Katayama Y; Yanase H; Kato N
    FEMS Microbiol Lett; 1999 Jul; 176(1):125-30. PubMed ID: 10418139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanol production by reversed methylotrophy constructed in
    Takeya T; Yamakita M; Hayashi D; Fujisawa K; Sakai Y; Yurimoto H
    Biosci Biotechnol Biochem; 2020 May; 84(5):1062-1068. PubMed ID: 31942827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HxlR, a member of the DUF24 protein family, is a DNA-binding protein that acts as a positive regulator of the formaldehyde-inducible hxlAB operon in Bacillus subtilis.
    Yurimoto H; Hirai R; Matsuno N; Yasueda H; Kato N; Sakai Y
    Mol Microbiol; 2005 Jul; 57(2):511-9. PubMed ID: 15978081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Two Recombinant 3-Hexulose-6-Phosphate Synthases from the Halotolerant Obligate Methanotroph Methylomicrobium alcaliphilum 20Z.
    Rozova ON; But SY; Khmelenina VN; Reshetnikov AS; Mustakhimov II; Trotsenko YA
    Biochemistry (Mosc); 2017 Feb; 82(2):176-185. PubMed ID: 28320301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribulose Monophosphate Shunt Provides Nearly All Biomass and Energy Required for Growth of E. coli.
    He H; Edlich-Muth C; Lindner SN; Bar-Even A
    ACS Synth Biol; 2018 Jun; 7(6):1601-1611. PubMed ID: 29756766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus.
    Jakobsen ØM; Benichou A; Flickinger MC; Valla S; Ellingsen TE; Brautaset T
    J Bacteriol; 2006 Apr; 188(8):3063-72. PubMed ID: 16585766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The gene encoding the ribulose monophosphate pathway enzyme, 3-hexulose-6-phosphate synthase, from Aminomonas aminovorus C2A1 is adjacent to coding sequences that exhibit similarity to histidine biosynthesis enzymes.
    Taylor EJ; Smith NL; Colby J; Charnock SJ; Black GW
    Antonie Van Leeuwenhoek; 2004 Aug; 86(2):167-72. PubMed ID: 15280650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of Bacillus methanolicus in 2 M methanol at 50 °C: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway.
    Bozdag A; Komives C; Flickinger MC
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1027-38. PubMed ID: 25952117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.