BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12351232)

  • 1. Cellulomonas flavigena: characterization of an endo-1,4-xylanase tightly induced by sugarcane bagasse.
    Mayorga-Reyes L; Morales Y; Salgado LM; Ortega A; Ponce-Noyola T
    FEMS Microbiol Lett; 2002 Sep; 214(2):205-9. PubMed ID: 12351232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-methyl-xyloside: positive effect on xylanase induction in Cellulomonas flavigena.
    Hidalgo-Lara ME; Farrés GS; Montes-Horcasitas Mdel C
    J Ind Microbiol Biotechnol; 2005 Aug; 32(8):345-8. PubMed ID: 15986227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena.
    Santiago-Hernández A; Vega-Estrada J; del Carmen Montes-Horcasitas M; Hidalgo-Lara ME
    J Ind Microbiol Biotechnol; 2007 Apr; 34(4):331-8. PubMed ID: 17219190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources.
    Sánchez-Herrera LM; Ramos-Valdivia AC; de la Torre M; Salgado LM; Ponce-Noyola T
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):589-95. PubMed ID: 17899068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Draw-fill batch culture mode for production of xylanases by Cellulomonas flavigena on sugar cane bagasse.
    Vega-Estrada J; Flores-Cotera LB; Santiago A; Magaña-Plaza I; Montes-Horcasitas C
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):435-8. PubMed ID: 11954788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic AMP regulates the biosynthesis of cellobiohydrolase in Cellulomonas flavigena growing in sugar cane bagasse.
    Herrera-Herrera JA; Pérez-Avalos O; Salgado LM; Ponce-Noyola T
    Arch Microbiol; 2009 Oct; 191(10):745-50. PubMed ID: 19701743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic saccharification of sugar cane bagasse by continuous xylanase and cellulase production from cellulomonas flavigena PR-22.
    Rojas-Rejón ÓA; Poggi-Varaldo HM; Ramos-Valdivia AC; Ponce-Noyola T; Cristiani-Urbina E; Martínez A; de la Torre M
    Biotechnol Prog; 2016 Mar; 32(2):321-6. PubMed ID: 26701152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of xylanases by sugar cane bagasse at different cell densities of Cellulomonas flavigena.
    Amaya-Delgado L; Vega-Estrada J; Flores-Cotera LB; Dendooven L; Hidalgo-Lara ME; Montes-Horcasitas MC
    Appl Microbiol Biotechnol; 2006 Apr; 70(4):477-81. PubMed ID: 16059683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cellulases and xylanases from a derepressed mutant of Cellulomonas flavigena growing on sugar-cane bagasse in continuous culture.
    Ponce-Noyola T; de la Torre M
    Bioresour Technol; 2001 Jul; 78(3):285-91. PubMed ID: 11341690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of cellulases and xylanases under catabolic repression conditions from mutant PR-22 of Cellulomonas flavigena.
    Rojas-Rejón OA; Poggi-Varaldo HM; Ramos-Valdivia AC; Martínez-Jiménez A; Cristiani-Urbina E; de la Torre Martínez M; Ponce-Noyola T
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):257-64. PubMed ID: 20803244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cflxyn11A) from Cellulomonas flavigena.
    Amaya-Delgado L; Mejía-Castillo T; Santiago-Hernández A; Vega-Estrada J; Amelia FG; Xoconostle-Cázares B; Ruiz-Medrano R; Montes-Horcasitas Mdel C; Hidalgo-Lara ME
    Bioresour Technol; 2010 Jul; 101(14):5539-45. PubMed ID: 20231092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The family II carbohydrate-binding module of xylanase CflXyn11A from Cellulomonas flavigena increases the synergy with cellulase TrCel7B from Trichoderma reesei during the hydrolysis of sugar cane bagasse.
    Pavón-Orozco P; Santiago-Hernández A; Rosengren A; Hidalgo-Lara ME; Stålbrand H
    Bioresour Technol; 2012 Jan; 104():622-30. PubMed ID: 22169213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of the celcflB gene from Cellulomonas flavigena encoding an endo-beta-1,4-glucanase.
    Gutiérrez-Nava A; Herrera-Herrera A; Mayorga-Reyes L; Salgado LM; Ponce-Noyola T
    Curr Microbiol; 2003 Nov; 47(5):359-63. PubMed ID: 14669909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for temporal regulation of the two Pseudomonas cellulosa xylanases belonging to glycoside hydrolase family 11.
    Emami K; Nagy T; Fontes CM; Ferreira LM; Gilbert HJ
    J Bacteriol; 2002 Aug; 184(15):4124-33. PubMed ID: 12107129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and biochemical characterization of two xylanase-encoding genes from Cellulomonas pachnodae.
    Cazemier AE; Verdoes JC; van Ooyen AJ; Op den Camp HJ
    Appl Environ Microbiol; 1999 Sep; 65(9):4099-107. PubMed ID: 10473422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil.
    Lara CA; Santos RO; Cadete RM; Ferreira C; Marques S; Gírio F; Oliveira ES; Rosa CA; Fonseca C
    Antonie Van Leeuwenhoek; 2014 Jun; 105(6):1107-19. PubMed ID: 24748334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis.
    Cintra LC; Fernandes AG; Oliveira ICM; Siqueira SJL; Costa IGO; Colussi F; Jesuíno RSA; Ulhoa CJ; Faria FP
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):262-271. PubMed ID: 28693992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production.
    Santos BS; Gomes AF; Franciscon EG; Oliveira JM; Baffi MA
    Braz J Microbiol; 2015; 46(3):903-10. PubMed ID: 26413077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and characterization of a GH39 β-xylosidase II from Caulobacter crescentus.
    Corrêa JM; Graciano L; Abrahão J; Loth EA; Gandra RF; Kadowaki MK; Henn C; Simão Rde C
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2218-29. PubMed ID: 23054825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes.
    La Grange DC; Pretorius IS; Claeyssens M; van Zyl WH
    Appl Environ Microbiol; 2001 Dec; 67(12):5512-9. PubMed ID: 11722900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.