BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12351405)

  • 1. Overexpression of FKBP51 in idiopathic myelofibrosis regulates the growth factor independence of megakaryocyte progenitors.
    Giraudier S; Chagraoui H; Komura E; Barnache S; Blanchet B; LeCouedic JP; Smith DF; Larbret F; Taksin AL; Moreau-Gachelin F; Casadevall N; Tulliez M; Hulin A; Debili N; Vainchenker W
    Blood; 2002 Oct; 100(8):2932-40. PubMed ID: 12351405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutive expression of the FK506 binding protein 51 (FKBP51) in bone marrow cells and megakaryocytes derived from idiopathic myelofibrosis and non-neoplastic haematopoiesis.
    Bock O; Neusch M; Büsche G; Mengel M; Kreipe H
    Eur J Haematol; 2004 Apr; 72(4):239-44. PubMed ID: 15089760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous STAT5 activation induces growth factor independence in idiopathic myelofibrosis: possible relationship with FKBP51 overexpression.
    Komura E; Chagraoui H; Mansat de Mas V; Blanchet B; de Sepulveda P; Larbret F; Larghero J; Tulliez M; Debili N; Vainchenker W; Giraudier S
    Exp Hematol; 2003 Jul; 31(7):622-30. PubMed ID: 12842707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L.
    Taksin AL; Couedic JP; Dusanter-Fourt I; Massé A; Giraudier S; Katz A; Wendling F; Vainchenker W; Casadevall N; Debili N
    Blood; 1999 Jan; 93(1):125-39. PubMed ID: 9864154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role for the nuclear factor kappaB pathway in transforming growth factor-beta1 production in idiopathic myelofibrosis: possible relationship with FK506 binding protein 51 overexpression.
    Komura E; Tonetti C; Penard-Lacronique V; Chagraoui H; Lacout C; Lecouédic JP; Rameau P; Debili N; Vainchenker W; Giraudier S
    Cancer Res; 2005 Apr; 65(8):3281-9. PubMed ID: 15833861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis.
    Ciurea SO; Merchant D; Mahmud N; Ishii T; Zhao Y; Hu W; Bruno E; Barosi G; Xu M; Hoffman R
    Blood; 2007 Aug; 110(3):986-93. PubMed ID: 17473062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex vivo expansion of megakaryocyte progenitors: effect of various growth factor combinations on CD34+ progenitor cells from bone marrow and G-CSF-mobilized peripheral blood.
    Gehling UM; Ryder JW; Hogan CJ; Hami L; McNiece I; Franklin W; Williams S; Helm K; King J; Shpall EJ
    Exp Hematol; 1997 Oct; 25(11):1125-39. PubMed ID: 9328449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia.
    Pikman Y; Lee BH; Mercher T; McDowell E; Ebert BL; Gozo M; Cuker A; Wernig G; Moore S; Galinsky I; DeAngelo DJ; Clark JJ; Lee SJ; Golub TR; Wadleigh M; Gilliland DG; Levine RL
    PLoS Med; 2006 Jul; 3(7):e270. PubMed ID: 16834459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis, pathogenesis and treatment of the myeloproliferative disorders essential thrombocythemia, polycythemia vera and essential megakaryocytic granulocytic metaplasia and myelofibrosis.
    Michiels JJ; Kutti J; Stark P; Bazzan M; Gugliotta L; Marchioli R; Griesshammer M; van Genderen PJ; Brière J; Kiladjian JJ; Barbui T; Finazzi G; Berlin NI; Pearson TC; Green AC; Fruchtmann SM; Silver RT; Hansmann E; Wehmeier A; Lengfelder E; Landolfi R; Kvasnicka HM; Hasselbalch H; Cervantes F; Thiele J
    Neth J Med; 1999 Feb; 54(2):46-62. PubMed ID: 10079679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary myelofibrosis marrow-derived CD14+/CD34- monocytes induce myelofibrosis-like phenotype in immunodeficient mice and give rise to megakaryocytes.
    Manshouri T; Verstovsek S; Harris DM; Veletic I; Zhang X; Post SM; Bueso-Ramos CE; Estrov Z
    PLoS One; 2019; 14(9):e0222912. PubMed ID: 31569199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of defective megakaryocytic development in patients with myelodysplastic syndromes.
    Hofmann WK; Kalina U; Wagner S; Seipelt G; Ries C; Hoelzer D; Ottmann OG
    Exp Hematol; 1999 Mar; 27(3):395-400. PubMed ID: 10089900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of miR-34a-5p in Hematopoietic Progenitor Cells Proliferation and Fate Decision: Novel Insights into the Pathogenesis of Primary Myelofibrosis.
    Bianchi E; Ruberti S; Rontauroli S; Guglielmelli P; Salati S; Rossi C; Zini R; Tagliafico E; Vannucchi AM; Manfredini R
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28098757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Megakaryocyte colony formation in chronic myeloid leukemia and myelofibrosis.
    Juvonen E
    Leuk Res; 1988; 12(9):751-6. PubMed ID: 3193813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carboxy-terminal fragment of osteogenic growth peptide in vitro increases bone marrow cell density in idiopathic myelofibrosis.
    Fazzi R; Pacini S; Testi R; Azzarà A; Galimberti S; Testi C; Trombi L; Metelli MR; Petrini M
    Br J Haematol; 2003 Apr; 121(1):76-85. PubMed ID: 12670334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Megakaryocytes in Myeloproliferative Neoplasms Have Unique Somatic Mutations.
    Guo BB; Allcock RJ; Mirzai B; Malherbe JA; Choudry FA; Frontini M; Chuah H; Liang J; Kavanagh SE; Howman R; Ouwehand WH; Fuller KA; Erber WN
    Am J Pathol; 2017 Jul; 187(7):1512-1522. PubMed ID: 28502479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming growth factor-beta and megakaryocytes in the pathogenesis of idiopathic myelofibrosis.
    Martyré MC; Romquin N; Le Bousse-Kerdiles MC; Chevillard S; Benyahia B; Dupriez B; Demory JL; Bauters F
    Br J Haematol; 1994 Sep; 88(1):9-16. PubMed ID: 7803262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets.
    Psaila B; Wang G; Rodriguez-Meira A; Li R; Heuston EF; Murphy L; Yee D; Hitchcock IS; Sousos N; O'Sullivan J; Anderson S; Senis YA; Weinberg OK; Calicchio ML; ; Iskander D; Royston D; Milojkovic D; Roberts I; Bodine DM; Thongjuea S; Mead AJ
    Mol Cell; 2020 May; 78(3):477-492.e8. PubMed ID: 32386542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cytokines (IL-1 alpha, IL-3, IL-11, GM-CSF) on megakaryocyte-fibroblast interactions in normal human bone marrow.
    Schmitz B; Thiele J; Witte O; Kaufmann R; Wickenhauser C; Fischer R
    Eur J Haematol; 1995 Jul; 55(1):24-32. PubMed ID: 7615047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of circulating megakaryocyte progenitors (CFU-MK) in patients with primary myelofibrosis.
    Han ZC; Briere J; Nedellec G; Abgrall JF; Sensebe L; Parent D; Guern G
    Eur J Haematol; 1988 Feb; 40(2):130-5. PubMed ID: 3345826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenesis of myelofibrosis: role of ineffective megakaryopoiesis and megakaryocyte components.
    Castro-Malaspina H
    Prog Clin Biol Res; 1984; 154():427-54. PubMed ID: 6089232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.