These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 12351738)

  • 1. Dissociating striatal and hippocampal function developmentally with a stimulus-response compatibility task.
    Casey BJ; Thomas KM; Davidson MC; Kunz K; Franzen PL
    J Neurosci; 2002 Oct; 22(19):8647-52. PubMed ID: 12351738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.
    Dahmani L; Bohbot VD
    Neurobiol Learn Mem; 2015 Jan; 117():42-50. PubMed ID: 25038426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Striatal and Pallidal Activation during Reward Modulated Movement Using a Translational Paradigm.
    Bischoff-Grethe A; Buxton RB; Paulus MP; Fleisher AS; Yang TT; Brown GG
    J Int Neuropsychol Soc; 2015 Jul; 21(6):399-411. PubMed ID: 26156687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of excitotoxic lesions in the ventral striatopallidal--thalamocortical pathway on odor reversal learning: inability to extinguish an incorrect response.
    Ferry AT; Lu XC; Price JL
    Exp Brain Res; 2000 Apr; 131(3):320-35. PubMed ID: 10789947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder.
    Remijnse PL; Nielen MM; van Balkom AJ; Cath DC; van Oppen P; Uylings HB; Veltman DJ
    Arch Gen Psychiatry; 2006 Nov; 63(11):1225-36. PubMed ID: 17088503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of medial cortical, hippocampal and striatal interactions during cognitive set-shifting.
    Graham S; Phua E; Soon CS; Oh T; Au C; Shuter B; Wang SC; Yeh IB
    Neuroimage; 2009 May; 45(4):1359-67. PubMed ID: 19162202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Caudate Nucleus Mediates Learning of Stimulus-Control State Associations.
    Chiu YC; Jiang J; Egner T
    J Neurosci; 2017 Jan; 37(4):1028-1038. PubMed ID: 28123033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociating hippocampal and striatal contributions to sequential prediction learning.
    Bornstein AM; Daw ND
    Eur J Neurosci; 2012 Apr; 35(7):1011-23. PubMed ID: 22487032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents.
    Somerville LH; Hare T; Casey BJ
    J Cogn Neurosci; 2011 Sep; 23(9):2123-34. PubMed ID: 20809855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hippocampus is functionally connected to the striatum and orbitofrontal cortex during context dependent decision making.
    Ross RS; Sherrill KR; Stern CE
    Brain Res; 2011 Nov; 1423():53-66. PubMed ID: 22000080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging.
    Cools R; Clark L; Owen AM; Robbins TW
    J Neurosci; 2002 Jun; 22(11):4563-7. PubMed ID: 12040063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural substrates for reversing stimulus-outcome and stimulus-response associations.
    Xue G; Ghahremani DG; Poldrack RA
    J Neurosci; 2008 Oct; 28(44):11196-204. PubMed ID: 18971462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington's disease.
    Aron AR; Schlaghecken F; Fletcher PC; Bullmore ET; Eimer M; Barker R; Sahakian BJ; Robbins TW
    Brain; 2003 Mar; 126(Pt 3):713-23. PubMed ID: 12566291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prepulse inhibition in the rat is regulated by ventral and caudodorsal striato-pallidal circuitry.
    Kodsi MH; Swerdlow NR
    Behav Neurosci; 1995 Oct; 109(5):912-28. PubMed ID: 8554715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontostriatal microstructure modulates efficient recruitment of cognitive control.
    Liston C; Watts R; Tottenham N; Davidson MC; Niogi S; Ulug AM; Casey BJ
    Cereb Cortex; 2006 Apr; 16(4):553-60. PubMed ID: 16033925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory.
    Mattfeld AT; Stark CE
    Hippocampus; 2015 Aug; 25(8):900-11. PubMed ID: 25560298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of developmental differences in implicit sequence learning: an fMRI study of children and adults.
    Thomas KM; Hunt RH; Vizueta N; Sommer T; Durston S; Yang Y; Worden MS
    J Cogn Neurosci; 2004 Oct; 16(8):1339-51. PubMed ID: 15509382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memory Meets Control in Hippocampal and Striatal Binding of Stimuli, Responses, and Attentional Control States.
    Jiang J; Brashier NM; Egner T
    J Neurosci; 2015 Nov; 35(44):14885-95. PubMed ID: 26538657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting effects of excitotoxic lesions of the prefrontal cortex on the behavioural response to D-amphetamine and presynaptic and postsynaptic measures of striatal dopamine function in monkeys.
    Wilkinson LS; Dias R; Thomas KL; Augood SJ; Everitt BJ; Robbins TW; Roberts AC
    Neuroscience; 1997 Oct; 80(3):717-30. PubMed ID: 9276488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.