These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12352820)

  • 1. Investigation of a bioresorbable orbital implant.
    Jordan DR; Brownstein S; Gilberg S; Matthew B; Mawn L; Khouri L
    Ophthalmic Plast Reconstr Surg; 2002 Sep; 18(5):342-8. PubMed ID: 12352820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bioceramic orbital implant: a new generation of porous implants.
    Jordan DR; Mawn LA; Brownstein S; McEachren TM; Gilberg SM; Hill V; Grahovac SZ; Adenis JP
    Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):347-55. PubMed ID: 11021384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of experimental porous silicone implants and porous silicone implants.
    Son J; Kim CS; Yang J
    Graefes Arch Clin Exp Ophthalmol; 2012 Jun; 250(6):879-85. PubMed ID: 22202952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrovascularization of porous polyethylene (Medpor) orbital implant in a rabbit model.
    Jordan DR; Brownstein S; Dorey M; Yuen VH; Gilberg S
    Ophthalmic Plast Reconstr Surg; 2004 Mar; 20(2):136-43. PubMed ID: 15083083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Molteno M-Sphere.
    Jordan DR; Hwang I; Brownstein S; McEachren T; Gilberg S; Grahovac S; Mawn L
    Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):356-62. PubMed ID: 11021385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of early fibrovascular proliferation according to orbital implant in orbital floor fracture reconstruction.
    Lee H; Baek S
    J Craniofac Surg; 2012 Sep; 23(5):1518-23. PubMed ID: 22976649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary placement of a titanium motility post in a porous polyethylene orbital implant: animal model with quantitative assessment of fibrovascular ingrowth and vascular density.
    Hsu WC; Green JP; Spilker MH; Rubin PA
    Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):370-9. PubMed ID: 11021387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brazilian hydroxyapatite implant.
    Jordan DR; Hwang I; McEachren T; Brownstein S; Gilberg S; Grahovac S; Mawn L
    Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):363-9. PubMed ID: 11021386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyapatite and calcium phosphate coatings on aluminium oxide orbital implants.
    Jordan DR; Brownstein S; Gilberg S; Coupal D; Kim S; Mawn L
    Can J Ophthalmol; 2002 Feb; 37(1):7-13. PubMed ID: 11865960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate of vascularization and exposure of silicone-capped porous polyethylene spherical implants: an animal model.
    Kalwerisky K; Mihora L; Czyz CN; Foster JA; Holck DE
    Ophthalmic Plast Reconstr Surg; 2013; 29(5):350-6. PubMed ID: 23811596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical and histopathologic review of 18 explanted porous polyethylene orbital implants.
    Chuo JY; Dolman PJ; Ng TL; Buffam FV; White VA
    Ophthalmology; 2009 Feb; 116(2):349-54. PubMed ID: 19091412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new variety of hydroxyapatite: the Chinese implant.
    Jordan DR; Pelletier CR; Gilberg TS; Brownstein S; Grahovac SZ
    Ophthalmic Plast Reconstr Surg; 1999 Nov; 15(6):420-4. PubMed ID: 10588251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue ingrowth into perforated polymethylmethacrylate orbital implants: an experimental study.
    Miyashita D; Chahud F; da Silva GE; de Albuquerque VB; Garcia DM; Velasco e Cruz AA
    Ophthalmic Plast Reconstr Surg; 2013; 29(3):160-3. PubMed ID: 23446301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bovine hydroxyapatite orbital implant: a preliminary report.
    Perry JD; Goldberg RA; McCann JD; Shorr N; Engstrom R; Tong J
    Ophthalmic Plast Reconstr Surg; 2002 Jul; 18(4):268-74. PubMed ID: 12142759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a double-setting alpha-tricalcium phosphate cement in eviscerated rabbit eyes.
    OriĆ” AP; Neto FA; Laus JL; Dos Santos LA; Piza ET; Brunelli AT; Nishimori CT; de Souza AL
    Ophthalmic Plast Reconstr Surg; 2006; 22(2):126-30. PubMed ID: 16550058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of fibrovascular ingrowth into hydroxyapatite and porous polyethylene orbital implants.
    Rubin PA; Popham JK; Bilyk JR; Shore JW
    Ophthalmic Plast Reconstr Surg; 1994 Jun; 10(2):96-103. PubMed ID: 7522048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gore-Tex as an orbital implant material.
    Dei Cas R; Maus M; Bilyk J; Chang W; Eagle RC; Rubin P
    Ophthalmic Plast Reconstr Surg; 1998 Nov; 14(6):425-31. PubMed ID: 9842562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of hyperbaric oxygen therapy and irradiation on hydroxyapatite ocular implant exposure and fibrovascular ingrowth in New Zealand white rabbits.
    DeBacker CM; Dutton JJ; Proia AD; Halperin EC; Wagle TN; Holck DE
    Ophthalmic Plast Reconstr Surg; 1999 Nov; 15(6):412-9. PubMed ID: 10588250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass-ionomer cement: evaluation as an orbital implant.
    Hintschich C; Raithel E; Craig GT; Bernatzky G; Alzner E; Brook IM; Collin R
    Graefes Arch Clin Exp Ophthalmol; 1999 Feb; 237(2):169-74. PubMed ID: 9987636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vicryl-mesh wrap for the implantation of hydroxyapatite orbital implants: an animal model.
    Jordan DR; Ells A; Brownstein S; Munro SM; Grahovac SZ; Raymond F; Gilberg SM; Allen LH
    Can J Ophthalmol; 1995 Aug; 30(5):241-6. PubMed ID: 8529157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.