BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12353870)

  • 1. Accumulation of poly(3-hydroxybutyrate) from octanoate in different pseudomonas belonging to the rRNA homology group I.
    Diard S; Carlier JP; Ageron E; Grimont PA; Langlois V; Guérin P; Bouvet OM
    Syst Appl Microbiol; 2002 Aug; 25(2):183-8. PubMed ID: 12353870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads.
    Timm A; Steinbüchel A
    Appl Environ Microbiol; 1990 Nov; 56(11):3360-7. PubMed ID: 2125185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier transform infrared spectroscopy for screening and quantifying production of PHAs by Pseudomonas grown on sodium octanoate.
    Randriamahefa S; Renard E; Guérin P; Langlois V
    Biomacromolecules; 2003; 4(4):1092-7. PubMed ID: 12857097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general method for identification of polyhydroxyalkanoic acid synthase genes from pseudomonads belonging to the rRNA homology group I.
    Timm A; Wiese S; Steinbüchel A
    Appl Microbiol Biotechnol; 1994 Jan; 40(5):669-75. PubMed ID: 7508720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taxonomic implications of synthesis of poly-beta-hydroxybutyrate and other poly-beta-hydroxyalkanoates by aerobic pseudomonads.
    Kessler B; Palleroni NJ
    Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():711-713. PubMed ID: 10758879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium-chain-length poly 3-hydroxyalkanoates.
    Sujatha K; Mahalakshmi A; Shenbagarathai R
    Arch Microbiol; 2007 Nov; 188(5):451-62. PubMed ID: 17653530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida.
    Fiedler S; Steinbüchel A; Rehm BH
    Arch Microbiol; 2002 Aug; 178(2):149-60. PubMed ID: 12115060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymerase C1 levels and poly(R-3-hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains.
    Kraak MN; Smits TH; Kessler B; Witholt B
    J Bacteriol; 1997 Aug; 179(16):4985-91. PubMed ID: 9260937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA.
    Huisman GW; Wonink E; Meima R; Kazemier B; Terpstra P; Witholt B
    J Biol Chem; 1991 Feb; 266(4):2191-8. PubMed ID: 1989978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads.
    Huisman GW; de Leeuw O; Eggink G; Witholt B
    Appl Environ Microbiol; 1989 Aug; 55(8):1949-54. PubMed ID: 2506811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting metagenomic diversity for novel polyhydroxyalkanoate synthases: production of a terpolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) with a recombinant Pseudomonas putida strain.
    Cheema S; Bassas-Galia M; Sarma PM; Lal B; Arias S
    Bioresour Technol; 2012 Jan; 103(1):322-8. PubMed ID: 22071242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitrogen limitation on long-side-chain poly-beta-hydroxyalkanoate synthesis by Pseudomonas resinovorans.
    Ramsay BA; Saracovan I; Ramsay JA; Marchessault RH
    Appl Environ Microbiol; 1992 Feb; 58(2):744-6. PubMed ID: 1610198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Taxonomic analysis of Pseudomonas strains with uncertain taxonomic status].
    Kotsofliak OI; Kiprianova EA; Levanova GF
    Mikrobiol Z; 2004; 66(3):5-13. PubMed ID: 15456213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective beta-ketothiolase gene.
    Ayub ND; Julia Pettinari M; Méndez BS; López NI
    FEMS Microbiol Lett; 2006 Nov; 264(1):125-31. PubMed ID: 17020558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale production of poly(3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process.
    Elbahloul Y; Steinbüchel A
    Appl Environ Microbiol; 2009 Feb; 75(3):643-51. PubMed ID: 19047387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance.
    Ayub ND; Pettinari MJ; Ruiz JA; López NI
    Curr Microbiol; 2004 Sep; 49(3):170-4. PubMed ID: 15386099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas chromatography-mass spectrometry-based monomer composition analysis of medium-chain-length polyhydroxyalkanoates biosynthesized by Pseudomonas spp.
    Huang P; Okoshi T; Mizuno S; Hiroe A; Tsuge T
    Biosci Biotechnol Biochem; 2018 Sep; 82(9):1615-1623. PubMed ID: 29804521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of alginate gene sequences among members of the pseudomonad rRNA homology groups I-IV.
    Fett WF; Wijey C; Lifson ER
    FEMS Microbiol Lett; 1992 Dec; 78(2-3):151-7. PubMed ID: 1283378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular degradation of two structurally different polyhydroxyalkanoic acids accumulated in Pseudomonas putida and Pseudomonas citronellolis from mixtures of octanoic acid and 5-phenylvaleric acid.
    Chung DM; Choi MH; Song JJ; Yoon SC; Kang IK; Huh NE
    Int J Biol Macromol; 2001 Dec; 29(4-5):243-50. PubMed ID: 11718820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures.
    Fontaine P; Mosrati R; Corroler D
    Int J Biol Macromol; 2017 May; 98():430-435. PubMed ID: 28174083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.