BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12353992)

  • 1. Electron-withdrawing substituents decrease the electrophilicity of the carbonyl carbon. An investigation with the aid of (13)C NMR chemical shifts, nu(C[double bond]O) frequency values, charge densities, and isodesmic reactions to interpret substituent effects on reactivity.
    Neuvonen H; Neuvonen K; Koch A; Kleinpeter E; Pasanen P
    J Org Chem; 2002 Oct; 67(20):6995-7003. PubMed ID: 12353992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substituent influences on the stability of the ring and chain tautomers in 1,3-O,N-heterocyclic systems: characterization by 13C NMR chemical shifts, PM3 charge densities, and isodesmic reactions.
    Neuvonen K; Fülöp F; Neuvonen H; Koch A; Kleinpeter E; Pihlaja K
    J Org Chem; 2001 Jun; 66(12):4132-40. PubMed ID: 11397144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of substituent-induced electronic interplay. Effect of the remote aromatic ring substituent of phenyl benzoates on the sensitivity of the carbonyl unit to electronic effects of phenyl or benzoyl ring substituents.
    Neuvonen H; Neuvonen K; Pasanen P
    J Org Chem; 2004 May; 69(11):3794-800. PubMed ID: 15153011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio study of the substituent effects on the relative stability of the E and Z conformers of phenyl esters. Stereoelectronic effects on the reactivity of the carbonyl group.
    Neuvonen H; Neuvonen K; Koch A; Kleinpeter E
    J Phys Chem A; 2005 Jul; 109(28):6279-89. PubMed ID: 16833969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substituent cross-interaction effects on the electronic character of the C=N bridging group in substituted benzylidene anilines--models for molecular cores of mesogenic compounds. A 13C NMR study and comparison with theoretical results.
    Neuvonen H; Neuvonen K; Fülöp F
    J Org Chem; 2006 Apr; 71(8):3141-8. PubMed ID: 16599611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Density Functional Study of Substituent Effects on the O-H and O-CH(3) Bond Dissociation Energies in Phenol and Anisole.
    Wu YD; Lai DK
    J Org Chem; 1996 Nov; 61(22):7904-7910. PubMed ID: 11667750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Theoretical Study of the Relationship between the Electrophilicity ω Index and Hammett Constant σ
    Ben El Ayouchia H; Anane H; El Idrissi Moubtassim ML; Domingo LR; Julve M; Stiriba SE
    Molecules; 2016 Oct; 21(11):. PubMed ID: 27801811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water.
    Anglada JM; González J; Torrent-Sucarrat M
    Phys Chem Chem Phys; 2011 Jul; 13(28):13034-45. PubMed ID: 21687896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gauging stability and reactivity of carbonyl O-oxide Criegee intermediates.
    Wagner JP
    Phys Chem Chem Phys; 2019 Oct; 21(38):21530-21540. PubMed ID: 31536065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The radical stabilization energy of a substituted carbon-centered free radical depends on both the functionality of the substituent and the ordinality of the radical.
    Poutsma ML
    J Org Chem; 2011 Jan; 76(1):270-6. PubMed ID: 21141915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the electronic structures of imine and hydrazone side-chain functionalities with the aid of 13C and 15N NMR chemical shifts and PM3 calculations. The influence of C=N-substitution on the sensitivity to aromatic substitution.
    Neuvonen K; Fülöp F; Neuvonen H; Koch A; Kleinpeter E; Pihlaja K
    J Org Chem; 2003 Mar; 68(6):2151-60. PubMed ID: 12636374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical modeling of molecular spectra parameters of disubstituted diacetylenes.
    Roman M; Dobrowolski JC; Baranska M
    J Chem Inf Model; 2011 Feb; 51(2):283-95. PubMed ID: 21254762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity relationships for degradation reaction of 1-beta-o-acyl glucuronides: kinetic description and prediction of intrinsic electrophilic reactivity under physiological conditions.
    Baba A; Yoshioka T
    Chem Res Toxicol; 2009 Jan; 22(1):158-72. PubMed ID: 19105593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 8-Purinyl versus 2-Benzimidazolyl Carbanions: Charge Demands of the Heterocycles and Ligand Properties of the Bis(heteroaryl)methanes(1).
    Abbotto A; Facchetti A; Bradamante S; Pagani GA
    J Org Chem; 1998 Feb; 63(3):436-444. PubMed ID: 11672030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substituent effects on the acidity of weak acids. 2. Calculated gas-phase acidities of substituted benzoic acids.
    Wiberg KB
    J Org Chem; 2002 Jul; 67(14):4787-94. PubMed ID: 12098290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular structure of substituted phenylamine alpha-OMe- and alpha-OH-p-benzoquinone derivatives. Synthesis and correlation of spectroscopic, electrochemical, and theoretical parameters.
    Aguilar-Martínez M; Bautista-Martínez JA; Macías-Ruvalcaba N; González I; Tovar E; Marín del Alizal T; Collera O; Cuevas G
    J Org Chem; 2001 Dec; 66(25):8349-63. PubMed ID: 11735513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of substituents on the strength of N-X (X = H, F, and Cl) bond dissociation energies: a high-level quantum chemical study.
    O'Reilly RJ; Karton A; Radom L
    J Phys Chem A; 2011 Jun; 115(21):5496-504. PubMed ID: 21548557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-activity relationships for the degradation reaction of 1-beta-O-acyl glucuronides. Part 3: Electronic and steric descriptors predicting the reactivity of aralkyl carboxylic acid 1-beta-O-acyl glucuronides.
    Baba A; Yoshioka T
    Chem Res Toxicol; 2009 Dec; 22(12):1998-2008. PubMed ID: 19902937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance (NMR) and quantitative structure-activity relationship (QSAR) studies on the transacylation reactivity of model 1beta-O-acyl glucuronides. II: QSAR modelling of the reaction using both computational and experimental NMR parameters.
    Vanderhoeven SJ; Troke J; Tranter GE; Wilson ID; Nicholson JK; Lindon JC
    Xenobiotica; 2004 Oct; 34(10):889-900. PubMed ID: 15764409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.