These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12354025)

  • 1. Hydrolytically active tetranuclear nickel complexes with structural resemblance to the active site of urease.
    Carlsson H; Haukka M; Nordlander E
    Inorg Chem; 2002 Oct; 41(20):4981-3. PubMed ID: 12354025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel complexes of carboxylate-containing polydentate ligands as models for the active site of urease.
    Carlsson H; Haukka M; Bousseksou A; Latour JM; Nordlander E
    Inorg Chem; 2004 Dec; 43(26):8252-62. PubMed ID: 15606171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional models of the active site of zinc phosphotriesterase.
    Carlsson H; Haukka M; Nordlander E
    Inorg Chem; 2004 Sep; 43(18):5681-7. PubMed ID: 15332820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic catalysis of urea decomposition: elimination or hydrolysis?
    Estiu G; Merz KM
    J Am Chem Soc; 2004 Sep; 126(38):11832-42. PubMed ID: 15382918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels.
    Benini S; Rypniewski WR; Wilson KS; Miletti S; Ciurli S; Mangani S
    Structure; 1999 Feb; 7(2):205-16. PubMed ID: 10368287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Structure of the Elusive Urease-Urea Complex Unveils the Mechanism of a Paradigmatic Nickel-Dependent Enzyme.
    Mazzei L; Cianci M; Benini S; Ciurli S
    Angew Chem Int Ed Engl; 2019 May; 58(22):7415-7419. PubMed ID: 30969470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dinickel complexes of disubstituted benzoate polydentate ligands: mimics for the active site of urease.
    Lee WZ; Tseng HS; Ku MY; Kuo TS
    Dalton Trans; 2008 May; (19):2538-41. PubMed ID: 18443695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ureases: quantum chemical calculations on cluster models.
    Suárez D; Díaz N; Merz KM
    J Am Chem Soc; 2003 Dec; 125(50):15324-37. PubMed ID: 14664576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of urease from Klebsiella aerogenes.
    Jabri E; Carr MB; Hausinger RP; Karplus PA
    Science; 1995 May; 268(5213):998-1004. PubMed ID: 7754395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dinuclear cobalt and nickel complexes of a mercaptoacetic acid substituted 1,2,4-triazole ligand: syntheses, structures and urease inhibitory studies.
    Fang ZY; Zhang L; Ma JP; Zhao L; Wang SL; Xie NH; Liu YQ; Guo XY; Qin J
    Acta Crystallogr C Struct Chem; 2019 Dec; 75(Pt 12):1658-1665. PubMed ID: 31802756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New [LNiII2]+ complexes incorporating 2-formyl or 2,6-diformyl-4-methyl phenol as inhibitors of the hydrolysis of the ligand L3-: Ni...Ni ferromagnetic coupling and S=2 ground states.
    Paital AR; Wong WT; Aromí G; Ray D
    Inorg Chem; 2007 Jul; 46(14):5727-33. PubMed ID: 17569529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and structural analysis of the inactivation of urease by mixed-ligand phosphine halide Ag(I) complexes.
    Mazzei L; Cirri D; Cianci M; Messori L; Ciurli S
    J Inorg Biochem; 2021 May; 218():111375. PubMed ID: 33711632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Di- and tetra-nuclear copper(II), nickel(II), and cobalt(II) complexes of four bis-tetradentate triazole-based ligands: synthesis, structure, and magnetic properties.
    Olguín J; Kalisz M; Clérac R; Brooker S
    Inorg Chem; 2012 May; 51(9):5058-69. PubMed ID: 22483063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsymmetrical dizinc complexes as models for the active sites of phosphohydrolases.
    Jarenmark M; Csapó E; Singh J; Wöckel S; Farkas E; Meyer F; Haukka M; Nordlander E
    Dalton Trans; 2010 Sep; 39(35):8183-94. PubMed ID: 20683537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntheses, X-ray structures, and physicochemical properties of phenoxo-bridged dinuclear nickel(II) complexes: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate.
    Mandal S; Balamurugan V; Lloret F; Mukherjee R
    Inorg Chem; 2009 Aug; 48(16):7544-56. PubMed ID: 19610657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and spectroscopic studies of nickel(II) complexes with a library of Bis(oxime)amine-containing ligands.
    Goldcamp MJ; Edison SE; Squires LN; Rosa DT; Vowels NK; Coker NL; Krause Bauer JA; Baldwin MJ
    Inorg Chem; 2003 Feb; 42(3):717-28. PubMed ID: 12562185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate.
    Mazzei L; Musiani F; Ciurli S
    J Biol Inorg Chem; 2020 Sep; 25(6):829-845. PubMed ID: 32809087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of Cys319 variants and acetohydroxamate-inhibited Klebsiella aerogenes urease.
    Pearson MA; Michel LO; Hausinger RP; Karplus PA
    Biochemistry; 1997 Jul; 36(26):8164-72. PubMed ID: 9201965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of pH on Catalytically Critical Protein Conformational Changes: The Case of the Urease, a Nickel Enzyme.
    Mazzei L; Cianci M; Benini S; Ciurli S
    Chemistry; 2019 Sep; 25(52):12145-12158. PubMed ID: 31271481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease.
    Mazzei L; Cianci M; Benini S; Bertini L; Musiani F; Ciurli S
    J Inorg Biochem; 2016 Jan; 154():42-9. PubMed ID: 26580226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.