These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 12354068)

  • 1. Predicting membrane protein types using residue-pair models based on reduced similarity dataset.
    Yang XG; Feng ZP
    J Biomol Struct Dyn; 2002 Oct; 20(2):163-72. PubMed ID: 12354068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using amino acid and peptide composition to predict membrane protein types.
    Yang XG; Luo RY; Feng ZP
    Biochem Biophys Res Commun; 2007 Feb; 353(1):164-9. PubMed ID: 17174938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition.
    Wang M; Yang J; Liu GP; Xu ZJ; Chou KC
    Protein Eng Des Sel; 2004 Jun; 17(6):509-16. PubMed ID: 15314209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of membrane protein types and subcellular locations.
    Chou KC; Elrod DW
    Proteins; 1999 Jan; 34(1):137-53. PubMed ID: 10336379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of membrane protein types by incorporating amphipathic effects.
    Chou KC; Cai YD
    J Chem Inf Model; 2005; 45(2):407-13. PubMed ID: 15807506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of protein structural class by amino acid and polypeptide composition.
    Luo RY; Feng ZP; Liu JK
    Eur J Biochem; 2002 Sep; 269(17):4219-25. PubMed ID: 12199700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types.
    Shen H; Chou KC
    Biochem Biophys Res Commun; 2005 Aug; 334(1):288-92. PubMed ID: 16002049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of membrane proteins using split amino acid and ensemble classification.
    Hayat M; Khan A; Yeasin M
    Amino Acids; 2012 Jun; 42(6):2447-60. PubMed ID: 21850437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting subcellular localization of proteins by hybridizing functional domain composition and pseudo-amino acid composition.
    Chou KC; Cai YD
    J Cell Biochem; 2004 Apr; 91(6):1197-203. PubMed ID: 15048874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Support vector machines for predicting membrane protein types by using functional domain composition.
    Cai YD; Zhou GP; Chou KC
    Biophys J; 2003 May; 84(5):3257-63. PubMed ID: 12719255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of membrane protein types based on the hydrophobic index of amino acids.
    Feng ZP; Zhang CT
    J Protein Chem; 2000 May; 19(4):269-75. PubMed ID: 11043931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of protein homo-oligomer types by pseudo amino acid composition: Approached with an improved feature extraction and Naive Bayes Feature Fusion.
    Zhang SW; Pan Q; Zhang HC; Shao ZC; Shi JY
    Amino Acids; 2006 Jun; 30(4):461-8. PubMed ID: 16773245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the subcellular location of prokaryotic proteins based on a new representation of the amino acid composition.
    Feng ZP
    Biopolymers; 2001 Apr; 58(5):491-9. PubMed ID: 11241220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for protein accessibility prediction based on residue types and conformational states.
    Zarei R; Arab S; Sadeghi M
    Comput Biol Chem; 2007 Oct; 31(5-6):384-8. PubMed ID: 17888743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the augmented Chou's pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach.
    Zeng YH; Guo YZ; Xiao RQ; Yang L; Yu LZ; Li ML
    J Theor Biol; 2009 Jul; 259(2):366-72. PubMed ID: 19341746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2007 Aug; 360(2):339-45. PubMed ID: 17586467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition.
    Shen HB; Yang J; Chou KC
    J Theor Biol; 2006 May; 240(1):9-13. PubMed ID: 16197963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ensemble of support vector machines for predicting the membrane protein type directly from the amino acid sequence.
    Nanni L; Lumini A
    Amino Acids; 2008 Oct; 35(3):573-80. PubMed ID: 18427715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial neural network model for predicting membrane protein types.
    Cai YD; Liu XJ; Chou KC
    J Biomol Struct Dyn; 2001 Feb; 18(4):607-10. PubMed ID: 11245255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.