These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12354220)

  • 1. Controlling pore assembly of staphylococcal gamma-haemolysin by low temperature and by disulphide bond formation in double-cysteine LukF mutants.
    Nguyen VT; Higuchi H; Kamio Y
    Mol Microbiol; 2002 Sep; 45(6):1485-98. PubMed ID: 12354220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermolecular ionic interactions serve as a possible switch for stem release in the staphylococcal bi-component toxin for β-barrel pore assembly.
    Takeda K; Tanaka Y; Abe N; Kaneko J
    Toxicon; 2018 Dec; 155():43-48. PubMed ID: 30312693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes.
    Kaneko J; Kamio Y
    Biosci Biotechnol Biochem; 2004 May; 68(5):981-1003. PubMed ID: 15170101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic assembly of two-component staphylococcal gamma-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3.
    Sugawara-Tomita N; Tomita T; Kamio Y
    J Bacteriol; 2002 Sep; 184(17):4747-56. PubMed ID: 12169599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N-terminal amino-latch region of Hlg2 component of staphylococcal bi-component γ-haemolysin is dispensable for prestem release to form β-barrel pores.
    Takeda K; Tanaka Y; Kaneko J
    J Biochem; 2020 Oct; 168(4):349-354. PubMed ID: 32330256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential residues, W177 and R198, of LukF for phosphatidylcholine-binding and pore-formation by staphylococcal gamma-hemolysin on human erythrocyte membranes.
    Monma N; Nguyen VT; Kaneko J; Higuchi H; Kamio Y
    J Biochem; 2004 Oct; 136(4):427-31. PubMed ID: 15625310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeric mutants of staphylococcal hemolysin, which act as both one-component and two-component hemolysin, created by grafting the stem domain.
    Ghanem N; Kanagami N; Matsui T; Takeda K; Kaneko J; Shiraishi Y; Choe CA; Uchikubo-Kamo T; Shirouzu M; Hashimoto T; Ogawa T; Matsuura T; Huang PS; Yokoyama T; Tanaka Y
    FEBS J; 2022 Jun; 289(12):3505-3520. PubMed ID: 35030303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arresting and releasing Staphylococcal alpha-hemolysin at intermediate stages of pore formation by engineered disulfide bonds.
    Kawate T; Gouaux E
    Protein Sci; 2003 May; 12(5):997-1006. PubMed ID: 12717022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further study on the two pivotal parts of Hlg2 for the full hemolytic activity of staphylococcal gamma-hemolysin.
    Yokota K; Sugawara N; Nariya H; Kaneko J; Tomita T; Kamio Y
    Biosci Biotechnol Biochem; 1998 Sep; 62(9):1745-50. PubMed ID: 9805375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rim domain loops of staphylococcal β-pore forming bi-component toxin S-components recognize target human erythrocytes in a coordinated manner.
    Peng Z; Takeshita M; Shibata N; Tada H; Tanaka Y; Kaneko J
    J Biochem; 2018 Aug; 164(2):93-102. PubMed ID: 29474554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components.
    Yamashita K; Kawai Y; Tanaka Y; Hirano N; Kaneko J; Tomita N; Ohta M; Kamio Y; Yao M; Tanaka I
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17314-9. PubMed ID: 21969538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cluster-forming property correlated with hemolytic activity by staphylococcal γ-hemolysin transmembrane pores.
    Tomita N; Abe K; Kamio Y; Ohta M
    FEBS Lett; 2011 Nov; 585(21):3452-6. PubMed ID: 22001207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule visualization of environment-sensitive fluorophores inserted into cell membranes by staphylococcal gamma-hemolysin.
    Nguyen AH; Nguyen VT; Kamio Y; Higuchi H
    Biochemistry; 2006 Feb; 45(8):2570-6. PubMed ID: 16489750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins.
    Yamashita D; Sugawara T; Takeshita M; Kaneko J; Kamio Y; Tanaka I; Tanaka Y; Yao M
    Nat Commun; 2014 Sep; 5():4897. PubMed ID: 25263813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrieving biological activity from LukF-PV mutants combined with different S components implies compatibility between the stem domains of these staphylococcal bicomponent leucotoxins.
    Werner S; Colin DA; Coraiola M; Menestrina G; Monteil H; Prévost G
    Infect Immun; 2002 Mar; 70(3):1310-8. PubMed ID: 11854215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulphide bond restrains the C-terminal region of thermostable direct hemolysin during folding to promote oligomerization.
    Kundu N; Tichkule S; Pandit SB; Chattopadhyay K
    Biochem J; 2017 Jan; 474(2):317-331. PubMed ID: 27784764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered covalent leucotoxin heterodimers form functional pores: insights into S-F interactions.
    Joubert O; Viero G; Keller D; Martinez E; Colin DA; Monteil H; Mourey L; Dalla Serra M; Prévost G
    Biochem J; 2006 Jun; 396(2):381-9. PubMed ID: 16494579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An N-terminal region of LukF of staphylococcal leukocidin/gamma-hemolysin crucial for the biological activity of the toxin.
    Kaneko J; Mascarenas AL; Huda MN; Tomita T; Kamio Y
    Biosci Biotechnol Biochem; 1998 Jul; 62(7):1465-7. PubMed ID: 9720234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential binding of LukF of staphylococcal gamma-hemolysin followed by the binding of H gamma II for the hemolysis of human erythrocytes.
    Ozawa T; Kaneko J; Kamio Y
    Biosci Biotechnol Biochem; 1995 Jun; 59(6):1181-3. PubMed ID: 7613012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for pore-forming mechanism of staphylococcal α-hemolysin.
    Sugawara T; Yamashita D; Kato K; Peng Z; Ueda J; Kaneko J; Kamio Y; Tanaka Y; Yao M
    Toxicon; 2015 Dec; 108():226-31. PubMed ID: 26428390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.