These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 12355163)

  • 1. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings.
    Jiang M; Zhang J
    Planta; 2002 Oct; 215(6):1022-30. PubMed ID: 12355163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of abscissic acid in water stress-induced antioxidant defense in leaves of maize seedlings.
    Jiang M; Zhang J
    Free Radic Res; 2002 Sep; 36(9):1001-15. PubMed ID: 12448826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abscisic acid-regulated responses of aba2-1 under osmotic stress: the abscisic acid-inducible antioxidant defence system and reactive oxygen species production.
    Ozfidan C; Turkan I; Sekmen AH; Seckin B
    Plant Biol (Stuttg); 2012 Mar; 14(2):337-46. PubMed ID: 21973087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves.
    Jiang M; Zhang J
    J Exp Bot; 2002 Dec; 53(379):2401-10. PubMed ID: 12432032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants.
    Zhang A; Jiang M; Zhang J; Tan M; Hu X
    Plant Physiol; 2006 Jun; 141(2):475-87. PubMed ID: 16531486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings.
    Jiang M; Zhang J
    Plant Cell Physiol; 2001 Nov; 42(11):1265-73. PubMed ID: 11726712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ABA Affects Brassinosteroid-Induced Antioxidant Defense via ZmMAP65-1a in Maize Plants.
    Zhu Y; Liu W; Sheng Y; Zhang J; Chiu T; Yan J; Jiang M; Tan M; Zhang A
    Plant Cell Physiol; 2015 Jul; 56(7):1442-55. PubMed ID: 25941233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of putrescine in osmotic stress-induced ABA signaling in leaves of wheat seedlings.
    DU HY; Chen GS; Yu JM; Bao YY; Liu GT; Liu HP; Gupta R
    J Biosci; 2019 Dec; 44(6):. PubMed ID: 31894117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings.
    Jiang M; Zhang J
    Plant Cell Environ; 2003 Jun; 26(6):929-939. PubMed ID: 12803620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitric oxide in abscisic acid-induced subcellular antioxidant defense of maize leaves.
    Sang JR; Jiang MY; Lin F; Li J; Xu SC
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):553-66. PubMed ID: 18349510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves.
    Xu S
    Acta Biochim Biophys Sin (Shanghai); 2010 Sep; 42(9):646-55. PubMed ID: 20702465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The mechanism of ABA-induced apoplastic H2O2 accumulation in maize leaves].
    Zhu D; Jiang MY; Tan MP
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Oct; 32(5):519-26. PubMed ID: 17075174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of polyamine oxidase in abscisic acid-induced cytosolic antioxidant defense in leaves of maize.
    Xue B; Zhang A; Jiang M
    J Integr Plant Biol; 2009 Mar; 51(3):225-34. PubMed ID: 19261065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice.
    Wen F; Qin T; Wang Y; Dong W; Zhang A; Tan M; Jiang M
    J Integr Plant Biol; 2015 Feb; 57(2):213-28. PubMed ID: 24912543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of protein phosphorylation in water stress-induced antioxidant defense in maize leaves.
    Xu S; Ding H; Su F; Zhang A; Jiang M
    J Integr Plant Biol; 2009 Jul; 51(7):654-62. PubMed ID: 19566644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABA controls H₂O₂ accumulation through the induction of OsCATB in rice leaves under water stress.
    Ye N; Zhu G; Liu Y; Li Y; Zhang J
    Plant Cell Physiol; 2011 Apr; 52(4):689-98. PubMed ID: 21398647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice.
    Shi B; Ni L; Zhang A; Cao J; Zhang H; Qin T; Tan M; Zhang J; Jiang M
    Mol Plant; 2012 Nov; 5(6):1359-74. PubMed ID: 22869603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves.
    Hu X; Jiang M; Zhang A; Lu J
    Planta; 2005 Dec; 223(1):57-68. PubMed ID: 16049674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress.
    Guo WL; Chen RG; Gong ZH; Yin YX; Ahmed SS; He YM
    Genet Mol Res; 2012 Nov; 11(4):4063-80. PubMed ID: 23079969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants.
    Hu X; Jiang M; Zhang J; Zhang A; Lin F; Tan M
    New Phytol; 2007; 173(1):27-38. PubMed ID: 17176391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.