BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 12355178)

  • 1. The natriuretic effect of glibenclamide: evidence for a non-luminal site of action.
    Bailey MA; Shirley DG; Stocking CJ; Slater JM; Walter SJ
    Pflugers Arch; 2002 Sep; 444(6):777-84. PubMed ID: 12355178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal effects of glibenclamide: a micropuncture study.
    Bailey MA; Walter SJ
    J Pharmacol Exp Ther; 1998 May; 285(2):464-7. PubMed ID: 9580584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique natriuretic properties of the ATP-sensitive K(+)-channel blocker glyburide in conscious rats.
    Clark MA; Humphrey SJ; Smith MP; Ludens JH
    J Pharmacol Exp Ther; 1993 May; 265(2):933-7. PubMed ID: 8496833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium reabsorption in thick ascending limb of Henle's loop: effect of potassium channel blockade in vivo.
    Huang DY; Osswald H; Vallon V
    Br J Pharmacol; 2000 Jul; 130(6):1255-62. PubMed ID: 10903963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of the potassium channel opener minoxidil on renal electrolytes transport in the loop of henle.
    Wang T
    J Pharmacol Exp Ther; 2003 Feb; 304(2):833-40. PubMed ID: 12538840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaliuric diuresis and natriuresis in response to the KATP channel blocker U37883A: micropuncture studies on the tubular site of action.
    Huang DY; Osswald H; Vallon V
    Br J Pharmacol; 1999 Aug; 127(8):1811-8. PubMed ID: 10482911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a novel KATP channel blocker on renal tubule function and K channel activity.
    Wang T; Wang WH; Klein-Robbenhaar G; Giebisch G
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1382-9. PubMed ID: 7791111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of diuretic effects along the loop of Henle: an in vivo microperfusion study in rats.
    Unwin RJ; Walter SJ; Giebisch G; Capasso G; Shirley DG
    Clin Sci (Lond); 2000 Apr; 98(4):481-8. PubMed ID: 10731484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of glyburide on renal tubule transport and potassium-channel activity.
    Wang T; Wang WH; Klein-Robbenhaar G; Giebisch G
    Ren Physiol Biochem; 1995; 18(4):169-82. PubMed ID: 7481068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Na+-K+ pump and L-type Ca2+ channel by glibenclamide in Guinea pig ventricular myocytes.
    Lee SY; Lee CO
    J Pharmacol Exp Ther; 2005 Jan; 312(1):61-8. PubMed ID: 15365090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a K+ channel blocker on glomerular filtration rate and electrolyte excretion in conscious rats.
    Ludens JH; Clark MA; Lawson JA
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1375-81. PubMed ID: 7791110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the potassium channel blocker barium on sodium and potassium transport in the rat loop of Henle in vivo.
    Walter SJ; Shirley DG; Folkerd EJ; Unwin RJ
    Exp Physiol; 2001 Jul; 86(4):469-74. PubMed ID: 11445825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glibenclamide attenuates the antiarrhythmic effect of endotoxin with a mechanism not involving K(ATP) channels.
    Iskit AB; Erkent U; Ertunc M; Guc MO; Ilhan M; Onur R
    Vascul Pharmacol; 2007 Feb; 46(2):129-36. PubMed ID: 17064967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Na+- and Cl- -activated K+ channel in the thick ascending limb of mouse kidney.
    Paulais M; Lachheb S; Teulon J
    J Gen Physiol; 2006 Feb; 127(2):205-15. PubMed ID: 16446508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for hypothalamic K+(ATP) channels in the modulation of glucose homeostasis.
    Zhang Y; Zhou J; Corll C; Porter JR; Martin RJ; Roane DS
    Eur J Pharmacol; 2004 May; 492(1):71-9. PubMed ID: 15145709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of K ATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat.
    Gozalov A; Jansen-Olesen I; Klaerke D; Olesen J
    Headache; 2008 Sep; 48(8):1202-13. PubMed ID: 18647185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sesquiterpenoids from antidiabetic Psacalium decompositum block ATP sensitive potassium channels.
    Campos MG; Oropeza M; Torres-Sosa C; Jiménez-Estrada M; Reyes-Chilpa R
    J Ethnopharmacol; 2009 Jun; 123(3):489-93. PubMed ID: 19501281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of ATP-sensitive potassium channels in normal and hypertension-associated pregnancy in rats.
    Lima R; Tardim JC; Barros ME; Boim MA
    Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):780-6. PubMed ID: 16922806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vasodilator mechanism of sulfur dioxide on isolated aortic rings of rats: Involvement of the K+ and Ca2+ channels.
    Zhang Q; Meng Z
    Eur J Pharmacol; 2009 Jan; 602(1):117-23. PubMed ID: 19049805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U; Vogt J; Schuh-Hofer S; Dreier JP; Dirnagl U
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.