These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 12355239)

  • 21. Swim bladder enhances lagenar sensitivity to sound pressure and higher frequencies in female plainfin midshipman (
    Vetter BJ; Sisneros JA
    J Exp Biol; 2020 Jul; 223(Pt 14):. PubMed ID: 32587068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reproductive-state dependent changes in saccular hair cell density of the vocal male plainfin midshipman fish.
    Lozier NR; Sisneros JA
    Hear Res; 2019 Nov; 383():107805. PubMed ID: 31614292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intra- and Intersexual swim bladder dimorphisms in the plainfin midshipman fish (Porichthys notatus): Implications of swim bladder proximity to the inner ear for sound pressure detection.
    Mohr RA; Whitchurch EA; Anderson RD; Forlano PM; Fay RR; Ketten DR; Cox TC; Sisneros JA
    J Morphol; 2017 Nov; 278(11):1458-1468. PubMed ID: 28691340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive hearing in the vocal plainfin midshipman fish: getting in tune for the breeding season and implications for acoustic communication.
    Sisneros JA
    Integr Zool; 2009 Mar; 4(1):33-42. PubMed ID: 21392275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sexually dimorphic swim bladder extensions enhance the auditory sensitivity of female plainfin midshipman fish,
    Colleye O; Vetter BJ; Mohr RA; Seeley LH; Sisneros JA
    J Exp Biol; 2019 Jul; 222(Pt 14):. PubMed ID: 31221741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Saccular-specific hair cell addition correlates with reproductive state-dependent changes in the auditory saccular sensitivity of a vocal fish.
    Coffin AB; Mohr RA; Sisneros JA
    J Neurosci; 2012 Jan; 32(4):1366-76. PubMed ID: 22279221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auditory saccular sensitivity of the vocal Lusitanian toadfish: low frequency tuning allows acoustic communication throughout the year.
    Vasconcelos RO; Sisneros JA; Amorim MC; Fonseca PJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Sep; 197(9):903-13. PubMed ID: 21559971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequency response properties of lateral line superficial neuromasts in a vocal fish, with evidence for acoustic sensitivity.
    Weeg MS; Bass AH
    J Neurophysiol; 2002 Sep; 88(3):1252-62. PubMed ID: 12205146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Encoding of acoustic directional information by saccular afferents of the sleeper goby, Dormitator latifrons.
    Lu Z; Song J; Popper AN
    J Comp Physiol A; 1998 Jun; 182(6):805-15. PubMed ID: 9631556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steroid-dependent auditory plasticity for the enhancement of acoustic communication: recent insights from a vocal teleost fish.
    Sisneros JA
    Hear Res; 2009 Jun; 252(1-2):9-14. PubMed ID: 19168118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of the swim bladder and lateral line in near-field sound source localization by fish.
    Coffin AB; Zeddies DG; Fay RR; Brown AD; Alderks PW; Bhandiwad AA; Mohr RA; Gray MD; Rogers PH; Sisneros JA
    J Exp Biol; 2014 Jun; 217(Pt 12):2078-88. PubMed ID: 24675557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directional Hearing and Sound Source Localization in Fishes.
    Sisneros JA; Rogers PH
    Adv Exp Med Biol; 2016; 877():121-55. PubMed ID: 26515313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound.
    Curthoys IS; Vulovic V; Sokolic L; Pogson J; Burgess AM
    Brain Res Bull; 2012 Oct; 89(1-2):16-21. PubMed ID: 22814095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sexually-dimorphic expression of tyrosine hydroxylase immunoreactivity in the brain of a vocal teleost fish (Porichthys notatus).
    Goebrecht GK; Kowtoniuk RA; Kelly BG; Kittelberger JM
    J Chem Neuroanat; 2014 Mar; 56():13-34. PubMed ID: 24418093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directional selectivity and frequency tuning of midbrain cells in the oyster toadfish, Opsanus tau.
    Edds-Walton PL; Fay RR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jul; 189(7):527-43. PubMed ID: 12827421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroanatomical Evidence for Catecholamines as Modulators of Audition and Acoustic Behavior in a Vocal Teleost.
    Forlano PM; Sisneros JA
    Adv Exp Med Biol; 2016; 877():439-75. PubMed ID: 26515325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic Sea.
    Wysocki LE; Codarin A; Ladich F; Picciulin M
    J Acoust Soc Am; 2009 Oct; 126(4):2100-7. PubMed ID: 19813819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coding of acoustic particle motion by utricular fibers in the sleeper goby, Dormitator latifrons.
    Lu Z; Xu Z; Buchser WJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):923-38. PubMed ID: 15316732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of the acoustically evoked behavioral response in zebrafish to pure tones.
    Zeddies DG; Fay RR
    J Exp Biol; 2005 Apr; 208(Pt 7):1363-72. PubMed ID: 15781896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure.
    Mooney TA; Hanlon RT; Christensen-Dalsgaard J; Madsen PT; Ketten DR; Nachtigall PE
    J Exp Biol; 2010 Nov; 213(Pt 21):3748-59. PubMed ID: 20952625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.