BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 12355251)

  • 1. Sphingomyelin composition and physical asymmetries in native acetylcholine receptor-rich membranes.
    Bonini IC; Antollini SS; Gutiérrez-Merino C; Barrantes FJ
    Eur Biophys J; 2002 Oct; 31(6):417-27. PubMed ID: 12355251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer.
    Antollini SS; Soto MA; Bonini de Romanelli I; Gutiérrez-Merino C; Sotomayor P; Barrantes FJ
    Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes.
    Wenz JJ; Barrantes FJ
    Biochemistry; 2005 Jan; 44(1):398-410. PubMed ID: 15628882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J; Bagatolli LA; Goñi FM; Alonso A
    Biophys J; 2006 Feb; 90(3):903-14. PubMed ID: 16284266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of lipids and ligands with nicotinic acetylcholine receptor vesicles assessed by electron paramagnetic resonance spectroscopy.
    Arias HR
    Methods Mol Biol; 2010; 606():291-318. PubMed ID: 20013404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of interaction of Leu-enkephalin with lipid membranes.
    Liu S; Shibata A; Ueno S; Xu F; Baba Y; Jiang D; Li Y
    Colloids Surf B Biointerfaces; 2006 Mar; 48(2):148-58. PubMed ID: 16542826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes.
    Dreger M; Krauss M; Herrmann A; Hucho F
    Biochemistry; 1997 Jan; 36(4):839-47. PubMed ID: 9020782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for lipid modulation of nicotinic acetylcholine receptor function.
    Barrantes FJ
    Brain Res Brain Res Rev; 2004 Dec; 47(1-3):71-95. PubMed ID: 15572164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence and molecular dynamics studies of the acetylcholine receptor gammaM4 transmembrane peptide in reconstituted systems.
    Antollini SS; Xu Y; Jiang H; Barrantes FJ
    Mol Membr Biol; 2005; 22(6):471-83. PubMed ID: 16373319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transbilayer asymmetry and sphingomyelin composition modulate the preferential membrane partitioning of the nicotinic acetylcholine receptor in Lo domains.
    Perillo VL; Peñalva DA; Vitale AJ; Barrantes FJ; Antollini SS
    Arch Biochem Biophys; 2016 Feb; 591():76-86. PubMed ID: 26702544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.
    Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A
    Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers.
    Devanathan S; Salamon Z; Lindblom G; Gröbner G; Tollin G
    FEBS J; 2006 Apr; 273(7):1389-402. PubMed ID: 16689927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of ethanol on the physical properties of neuronal membranes.
    Bae MK; Jeong DK; Park NS; Lee CH; Cho BH; Jang HO; Yun I
    Mol Cells; 2005 Jun; 19(3):356-64. PubMed ID: 15995352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The lipid environment of the nicotinic acetylcholine receptor in native and reconstituted membranes.
    Barrantes FJ
    Crit Rev Biochem Mol Biol; 1989; 24(5):437-78. PubMed ID: 2676352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane.
    Borroni V; Baier CJ; Lang T; Bonini I; White MM; Garbus I; Barrantes FJ
    Mol Membr Biol; 2007; 24(1):1-15. PubMed ID: 17453409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential distribution of the fluorescent phospholipid probes NBD-phosphatidylcholine and rhodamine-phosphatidylethanolamine in the exofacial leaflet of acetylcholine receptor-rich membranes from Torpedo marmorata.
    Gutiérrez-Merino C; Bonini de Romanelli IC; Pietrasanta LI; Barrantes FJ
    Biochemistry; 1995 Apr; 34(14):4846-55. PubMed ID: 7718591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles.
    Chen CH; Zuklie BM; Roth LG
    Arch Biochem Biophys; 1998 Mar; 351(1):135-40. PubMed ID: 9500847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.