These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12355320)

  • 1. Structural analysis of the curdlan-like exopolysaccharide produced by Cellulomonas flavigena KU.
    Kenyon WJ; Buller CS
    J Ind Microbiol Biotechnol; 2002 Oct; 29(4):200-3. PubMed ID: 12355320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The curdlan-type exopolysaccharide produced by Cellulomonas flavigena KU forms part of an extracellular glycocalyx involved in cellulose degradation.
    Kenyon WJ; Esch SW; Buller CS
    Antonie Van Leeuwenhoek; 2005 Feb; 87(2):143-8. PubMed ID: 15723175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting accumulation and degradation of curdlan, trehalose and glycogen in cultures of Cellulomonas flavigena strain KU (ATCC 53703).
    Siriwardana LS; Gall AR; Buller CS; Esch SW; Kenyon WJ
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):681-95. PubMed ID: 21190083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical maximum and observed product yields associated with curdlan production by Alcaligenes faecalis.
    Phillips KR; Lawford HG
    Can J Microbiol; 1983 Oct; 29(10):1270-6. PubMed ID: 6420029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture.
    Phillips KR; Pik J; Lawford HG; Lavers B; Kligerman A; Lawford GR
    Can J Microbiol; 1983 Oct; 29(10):1331-8. PubMed ID: 6362809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a Bacillus strain capable of degrading the extracellular glucan from Cellulomonas flavigena strain KU.
    Bertram PA; Buller CS; Stewart GC; Akagi JM
    J Appl Bacteriol; 1993 Apr; 74(4):460-6. PubMed ID: 8486553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curdlan-like exopolysaccharide production by Cellulomonas flavigena UNP3 during growth on hydrocarbon substrates.
    Arli SD; Trivedi UB; Patel KC
    World J Microbiol Biotechnol; 2011 Jun; 27(6):1415-22. PubMed ID: 25187141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Special bacterial polysaccharides and polysaccharases.
    Harada T
    Biochem Soc Symp; 1983; 48():97-116. PubMed ID: 6400487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of curdlan from culture media containing 13C-labeled glucose as the carbon source.
    Kai A; Ishino T; Arashida T; Hatanaka K; Akaike T; Matsuzaki K; Kaneko Y; Mimura T
    Carbohydr Res; 1993 Feb; 240():153-9. PubMed ID: 8458009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm-Mediated Fragmentation and Degradation of Microcrystalline Cellulose by Cellulomonas flavigena KU (ATCC 53703).
    Young ES; Butler JD; Molesworth-Kenyon SJ; Kenyon WJ
    Curr Microbiol; 2023 May; 80(6):200. PubMed ID: 37129770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of novel (1-->3)-beta-D-glucans having reducing glucose side chains.
    Kiho T; Matsushita M; Usui S; Ukai S
    Chem Pharm Bull (Tokyo); 1997 Apr; 45(4):725-7. PubMed ID: 9145507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of two loci involved in (1-->3)-beta-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene.
    Stasinopoulos SJ; Fisher PR; Stone BA; Stanisich VA
    Glycobiology; 1999 Jan; 9(1):31-41. PubMed ID: 9884404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operating bioreactors for microbial exopolysaccharide production.
    Seviour RJ; McNeil B; Fazenda ML; Harvey LM
    Crit Rev Biotechnol; 2011 Jun; 31(2):170-85. PubMed ID: 20919952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curdlan, a (1----3)-beta-D-glucan from Alcaligenes faecalis var. myxogenes IFO13140, activates the alternative complement pathway by heat treatment.
    Matsushita M
    Immunol Lett; 1990 Oct; 26(1):95-7. PubMed ID: 2276766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three exopolysaccharides of the beta-(1-->6)-D-glucan type and a beta-(1-->3;1-->6)-D-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit.
    Vasconcelos AF; Monteiro NK; Dekker RF; Barbosa AM; Carbonero ER; Silveira JL; Sassaki GL; da Silva R; de Lourdes Corradi da Silva M
    Carbohydr Res; 2008 Sep; 343(14):2481-5. PubMed ID: 18639868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains.
    Gangoiti MV; Puertas AI; Hamet MF; Peruzzo PJ; Llamas MG; Medrano M; Prieto A; Dueñas MT; Abraham AG
    Carbohydr Polym; 2017 Aug; 170():52-59. PubMed ID: 28522003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of the α-d-glucan produced by the sourdough isolate Lactobacillus brevis E25.
    Dertli E; Colquhoun IJ; Côté GL; Le Gall G; Narbad A
    Food Chem; 2018 Mar; 242():45-52. PubMed ID: 29037713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticoagulant activity of sulfoalkyl derivatives of curdlan.
    Lee KB; Bae JH; Kim JS; Yoo YC; Kim BS; Kwak ST; Kim YS
    Arch Pharm Res; 2001 Apr; 24(2):109-13. PubMed ID: 11339629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties, chemistry, and applications of the bioactive polysaccharide curdlan.
    Zhang R; Edgar KJ
    Biomacromolecules; 2014 Apr; 15(4):1079-96. PubMed ID: 24552241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and exopolysaccharide (EPS) production by Oenococcus oeni I4 and structural characterization of their EPSs.
    Ibarburu I; Soria-Díaz ME; Rodríguez-Carvajal MA; Velasco SE; Tejero-Mateo P; Gil-Serrano AM; Irastorza A; Dueñas MT
    J Appl Microbiol; 2007 Aug; 103(2):477-86. PubMed ID: 17650209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.