BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12356295)

  • 1. Three-dimensional solution NMR structure of Apo-L75F-TrpR, a temperature-sensitive mutant of the tryptophan repressor protein.
    Tyler R; Pelczer I; Carey J; Copié V
    Biochemistry; 2002 Oct; 41(40):11954-62. PubMed ID: 12356295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backbone amide dynamics studies of Apo-L75F-TrpR, a temperature-sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the (15)N NMR relaxation profiles of wild-type and A77V mutant Apo-TrpR repressors.
    Goel A; Tripet BP; Tyler RC; Nebert LD; Copié V
    Biochemistry; 2010 Sep; 49(37):8006-19. PubMed ID: 20718459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal dynamics of the tryptophan repressor (TrpR) and two functionally distinct TrpR variants, L75F-TrpR and A77V-TrpR, in their l-Trp-bound forms.
    Tripet BP; Goel A; Copie V
    Biochemistry; 2011 Jun; 50(23):5140-53. PubMed ID: 21553830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple helical conformations of the helix-turn-helix region revealed by NOE-restrained MD simulations of tryptophan aporepressor, TrpR.
    Harish B; Swapna GV; Kornhaber GJ; Montelione GT; Carey J
    Proteins; 2017 Apr; 85(4):731-740. PubMed ID: 28120439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subunit-specific backbone NMR assignments of a 64 kDa trp repressor/DNA complex: a role for N-terminal residues in tandem binding.
    Shan X; Gardner KH; Muhandiram DR; Kay LE; Arrowsmith CH
    J Biomol NMR; 1998 Apr; 11(3):307-18. PubMed ID: 9691278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-range effects on dynamics in a temperature-sensitive mutant of trp repressor.
    Jin L; Fukayama JW; Pelczer I; Carey J
    J Mol Biol; 1999 Jan; 285(1):361-78. PubMed ID: 9878412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The solution structures of Escherichia coli trp repressor and trp aporepressor at an intermediate resolution.
    Arrowsmith C; Pachter R; Altman R; Jardetzky O
    Eur J Biochem; 1991 Nov; 202(1):53-66. PubMed ID: 1935980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the tryptophan binding site of Escherichia coli tryptophan holorepressor by phosphorescence and optical detection of magnetic resonance of a tryptophan-free mutant.
    Li Z; Maki AH; Eftink MR; Mann CJ; Matthews CR
    Biochemistry; 1995 Oct; 34(39):12866-70. PubMed ID: 7548042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refined structure of lac repressor headpiece (1-56) determined by relaxation matrix calculations from 2D and 3D NOE data: change of tertiary structure upon binding to the lac operator.
    Slijper M; Bonvin AM; Boelens R; Kaptein R
    J Mol Biol; 1996 Jun; 259(4):761-73. PubMed ID: 8683581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmental differences in the stability of the trp-repressor peptide backbone.
    Czaplicki J; Arrowsmith C; Jardetzky O
    J Biomol NMR; 1991 Nov; 1(4):349-61. PubMed ID: 1841704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AV77 hinge mutation stabilizes the helix-turn-helix domain of trp repressor.
    Gryk MR; Jardetzky O
    J Mol Biol; 1996 Jan; 255(1):204-14. PubMed ID: 8568867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR.
    Penin F; Geourjon C; Montserret R; Böckmann A; Lesage A; Yang YS; Bonod-Bidaud C; Cortay JC; Nègre D; Cozzone AJ; Deléage G
    J Mol Biol; 1997 Jul; 270(3):496-510. PubMed ID: 9237914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tryptophan repressor sequence is highly conserved among the Enterobacteriaceae.
    Arvidson DN; Arvidson CG; Lawson CL; Miner J; Adams C; Youderian P
    Nucleic Acids Res; 1994 May; 22(10):1821-9. PubMed ID: 8208606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trp repressor-operator binding: NMR and electrophoretic mobility shift studies of the effect of DNA sequence and corepressor binding on two Trp repressor-operator complexes.
    Jaseja M; Jeeves M; Hyde EI
    Biochemistry; 2002 Dec; 41(50):14866-78. PubMed ID: 12475235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of recombinant hirudin and the Lys-47----Glu mutant: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study.
    Folkers PJ; Clore GM; Driscoll PC; Dodt J; Köhler S; Gronenborn AM
    Biochemistry; 1989 Mar; 28(6):2601-17. PubMed ID: 2567183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of a noncovalent trp repressor: DNA operator complex by electrospray ionization time-of-flight mass spectrometry.
    Potier N; Donald LJ; Chernushevich I; Ayed A; Ens W; Arrowsmith CH; Standing KG; Duckworth HW
    Protein Sci; 1998 Jun; 7(6):1388-95. PubMed ID: 9655343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refined solution structures of the Escherichia coli trp holo- and aporepressor.
    Zhao D; Arrowsmith CH; Jia X; Jardetzky O
    J Mol Biol; 1993 Feb; 229(3):735-46. PubMed ID: 8433368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR studies of the Escherichia coli Trp repressor.trpRs operator complex.
    Evans PD; Jaseja M; Jeeves M; Hyde EI
    Eur J Biochem; 1996 Dec; 242(3):567-75. PubMed ID: 9022683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy.
    Drohat AC; Amburgey JC; Abildgaard F; Starich MR; Baldisseri D; Weber DJ
    Biochemistry; 1996 Sep; 35(36):11577-88. PubMed ID: 8794737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry.
    Hodsdon ME; Cistola DP
    Biochemistry; 1997 Feb; 36(6):1450-60. PubMed ID: 9063893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.