BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12356420)

  • 1. Prediction of intestinal absorption: comparative assessment of GASTROPLUS and IDEA.
    Parrott N; Lavé T
    Eur J Pharm Sci; 2002 Oct; 17(1-2):51-61. PubMed ID: 12356420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.
    Sjögren E; Thörn H; Tannergren C
    Mol Pharm; 2016 Jun; 13(6):1763-78. PubMed ID: 26926043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.
    Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C
    Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches to Account for Colon Absorption in Physiologically Based Biopharmaceutics Modeling of Extended-Release Drug Products.
    Jadhav H; Augustijns P; Tannergren C
    Mol Pharm; 2023 Dec; 20(12):6272-6288. PubMed ID: 37902586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiologically Based Biopharmaceutics Modeling of Regional and Colon Absorption in Dogs.
    Eckernäs E; Tannergren C
    Mol Pharm; 2021 Apr; 18(4):1699-1710. PubMed ID: 33720733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of PBPK modeling to predict human intestinal metabolism of CYP3A substrates - an evaluation and case study using GastroPlus.
    Heikkinen AT; Baneyx G; Caruso A; Parrott N
    Eur J Pharm Sci; 2012 Sep; 47(2):375-86. PubMed ID: 22759901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the human oral bioavailability by using in vitro and in silico drug related parameters in a physiologically based absorption model.
    Paixão P; Gouveia LF; Morais JA
    Int J Pharm; 2012 Jun; 429(1-2):84-98. PubMed ID: 22449410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologically based biopharmaceutics modeling of regional and colon absorption in humans.
    Tannergren C; Jadhav H; Eckernäs E; Fagerberg J; Augustijns P; Sjögren E
    Eur J Pharm Biopharm; 2023 May; 186():144-159. PubMed ID: 37028605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the GastroPlus™ Advanced Compartmental and Transit (ACAT) Model in Early Discovery.
    Gobeau N; Stringer R; De Buck S; Tuntland T; Faller B
    Pharm Res; 2016 Sep; 33(9):2126-39. PubMed ID: 27278908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical predictions of drug absorption in drug discovery and development.
    Stenberg P; Bergström CA; Luthman K; Artursson P
    Clin Pharmacokinet; 2002; 41(11):877-99. PubMed ID: 12190333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physiological model for the estimation of the fraction dose absorbed in humans.
    Willmann S; Schmitt W; Keldenich J; Lippert J; Dressman JB
    J Med Chem; 2004 Jul; 47(16):4022-31. PubMed ID: 15267240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools.
    Willmann S; Lippert J; Schmitt W
    Expert Opin Drug Metab Toxicol; 2005 Jun; 1(1):159-68. PubMed ID: 16922658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Caco-2 cell monolayers in prediction of intestinal drug absorption.
    Shah P; Jogani V; Bagchi T; Misra A
    Biotechnol Prog; 2006; 22(1):186-98. PubMed ID: 16454510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive models for oral drug absorption: from in silico methods to integrated dynamical models.
    Dokoumetzidis A; Kalantzi L; Fotaki N
    Expert Opin Drug Metab Toxicol; 2007 Aug; 3(4):491-505. PubMed ID: 17696801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro, in Silico, and in Vivo Assessments of Intestinal Precipitation and Its Impact on Bioavailability of a BCS Class 2 Basic Compound.
    Kou D; Zhang C; Yiu H; Ng T; Lubach JW; Janson M; Mao C; Durk M; Chinn L; Winter H; Wigman L; Yehl P
    Mol Pharm; 2018 Apr; 15(4):1607-1617. PubMed ID: 29522347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advantage of the Dissolution/Permeation System for Estimating Oral Absorption of Drug Candidates in the Drug Discovery Stage.
    Miyaji Y; Fujii Y; Takeyama S; Kawai Y; Kataoka M; Takahashi M; Yamashita S
    Mol Pharm; 2016 May; 13(5):1564-74. PubMed ID: 27031624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability.
    Akamatsu M; Fujikawa M; Nakao K; Shimizu R
    Chem Biodivers; 2009 Nov; 6(11):1845-66. PubMed ID: 19937826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of gastrointestinal simulation for extensions for biowaivers of highly permeable compounds.
    Tubic-Grozdanis M; Bolger MB; Langguth P
    AAPS J; 2008; 10(1):213-26. PubMed ID: 18446522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification structure-activity relations (C-SAR) in prediction of human intestinal absorption.
    Zmuidinavicius D; Didziapetris R; Japertas P; Avdeef A; Petrauskas A
    J Pharm Sci; 2003 Mar; 92(3):621-33. PubMed ID: 12587124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caco-2 cells as a model for intestinal absorption.
    Angelis ID; Turco L
    Curr Protoc Toxicol; 2011 Feb; Chapter 20():Unit20.6. PubMed ID: 21400683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.