These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12356494)

  • 1. Comparison of FFT and adaptive ARMA methods in transcranial Doppler signals recorded from the cerebral vessels.
    Güler I; Hardalaç F; Kaymaz M
    Comput Biol Med; 2002 Nov; 32(6):445-53. PubMed ID: 12356494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):293-306. PubMed ID: 15121001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of Behcet disease with the application of FFT and AR methods.
    Güler I; Hardalaç F; Ubeyli ED
    Comput Biol Med; 2002 Nov; 32(6):419-34. PubMed ID: 12356492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of transcranial Doppler signals using artificial neural network.
    Serhatlioğlu S; Hardalaç F; Güler I
    J Med Syst; 2003 Apr; 27(2):205-14. PubMed ID: 12617361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of aorta failure with the application of FFT, AR and wavelet methods to Doppler technique.
    Güler I; Hardalaç F; Müldür S
    Comput Biol Med; 2001 Jul; 31(4):229-38. PubMed ID: 11334633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of FFT-analyzed umbilical artery doppler signals to fuzzy algorithm.
    Hardalaç F; Biri A; Sucak A
    J Med Syst; 2004 Dec; 28(6):549-59. PubMed ID: 15615283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of carotid disease with the application of STFT and CWT methods.
    Hardalaç F; Yildirim H; Serhatlioğlu S
    Comput Biol Med; 2007 Jun; 37(6):785-92. PubMed ID: 16997292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of stenosis and occlusion in arteries with the application of FFT, AR, and ARMA methods.
    Ubeyli ED; Güler I
    J Med Syst; 2003 Apr; 27(2):105-20. PubMed ID: 12617353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of classical and model-based spectral methods to ophthalmic arterial Doppler signals with uveitis disease.
    Güler I; Ubeyli ED
    Comput Biol Med; 2003 Nov; 33(6):455-71. PubMed ID: 12878231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer-based statistical pattern recognition for Doppler spectral waveforms of intracranial blood flow.
    Miao J; Benkeser PJ; Nichols FT
    Comput Biol Med; 1996 Jan; 26(1):53-63. PubMed ID: 8654053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of FFT analyzed cardiac Doppler signals to fuzzy algorithm.
    Güler I; Hardalaç F; Barişçi N
    Comput Biol Med; 2002 Nov; 32(6):435-44. PubMed ID: 12356493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of MLP neural network and neuro-fuzzy system in transcranial Doppler signals recorded from the cerebral vessels.
    Hardalaç F
    J Med Syst; 2008 Apr; 32(2):137-45. PubMed ID: 18461817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations of the zero crossing detector in the analysis of intracoronary Doppler: a comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease.
    Di Mario C; Roelandt JR; de Jaegere P; Linker DT; Oomen J; Serruys PW
    Cathet Cardiovasc Diagn; 1993 Jan; 28(1):56-64. PubMed ID: 8416334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of autoregressive and Fast Fourier Transform spectral analysis to tricuspid and mitral valve stenosis.
    Güler I; Kara S; Güler NF; Kiymik MK
    Comput Methods Programs Biomed; 1996 Jan; 49(1):29-36. PubMed ID: 8646836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral broadening of ophthalmic arterial Doppler signals using STFT and wavelet transform.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):345-54. PubMed ID: 15121004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Value of transcranial Doppler sonography].
    Schregel W
    Infusionsther Transfusionsmed; 1993 Oct; 20(5):267-71. PubMed ID: 7905761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of coronary failure with the application of FFT and AR methods.
    Serhatlioğlu S; Burma O; Hardalaç F; Güler I
    J Med Syst; 2003 Apr; 27(2):121-31. PubMed ID: 12617354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial Doppler: state of the art.
    Bazzocchi M; Quaia E; Zuiani C; Moroldo M
    Eur J Radiol; 1998 May; 27 Suppl 2():S141-8. PubMed ID: 9652514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of processing parameters for the analysis and detection of embolic signals.
    Aydin N; Markus HS
    Eur J Ultrasound; 2000 Sep; 12(1):69-79. PubMed ID: 10996772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Middle cerebral arterial flow changes on transcranial color and spectral Doppler sonography in patients with increased intracranial pressure.
    Wang Y; Duan YY; Zhou HY; Yuan LJ; Zhang L; Wang W; Li LH; Li L
    J Ultrasound Med; 2014 Dec; 33(12):2131-6. PubMed ID: 25425369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.