These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 12357810)
1. Metalloenzyme inspired dizinc catalyst for the polymerization of lactide. Williams CK; Brooks NR; Hillmyer MA; Tolman WB Chem Commun (Camb); 2002 Sep; (18):2132-3. PubMed ID: 12357810 [TBL] [Abstract][Full Text] [Related]
2. Supramolecular stabilization of a tris(imidazolyl) Zn-aqua complex evidenced by X-ray analysis: a structural model for mono-zinc active sites of enzymes. Sénèque O; Rager MN; Giorgi M; Reinaud O J Am Chem Soc; 2001 Aug; 123(34):8442-3. PubMed ID: 11516312 [No Abstract] [Full Text] [Related]
3. Polymerization of lactide with zinc and magnesium beta-diiminate complexes: stereocontrol and mechanism. Chamberlain BM; Cheng M; Moore DR; Ovitt TM; Lobkovsky EB; Coates GW J Am Chem Soc; 2001 Apr; 123(14):3229-38. PubMed ID: 11457057 [TBL] [Abstract][Full Text] [Related]
4. Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide monomers. Sauer A; Kapelski A; Fliedel C; Dagorne S; Kol M; Okuda J Dalton Trans; 2013 Jul; 42(25):9007-23. PubMed ID: 23552746 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, characterization and catalytic activity of magnesium and zinc aminophenoxide complexes: catalysts for ring-opening polymerization of L-lactide. Chuang HJ; Weng SF; Chang CC; Lin CC; Chen HY Dalton Trans; 2011 Oct; 40(37):9601-7. PubMed ID: 21853200 [TBL] [Abstract][Full Text] [Related]
7. Metalloenzyme-inspired catalysis: selective oxidation of primary alcohols with an iridium-aminyl-radical complex. Königsmann M; Donati N; Stein D; Schönberg H; Harmer J; Sreekanth A; Grützmacher H Angew Chem Int Ed Engl; 2007; 46(19):3567-70. PubMed ID: 17397021 [No Abstract] [Full Text] [Related]
8. Electron density controlled carbamate ligand binding mode: towards a better understanding of metalloenzyme activity. Neuhäuser C; Domide D; Mautz J; Kaifer E; Himmel HJ Dalton Trans; 2008 Apr; (14):1821-4. PubMed ID: 18369486 [TBL] [Abstract][Full Text] [Related]
9. Zinc complexes supported by methyl salicylato ligands: synthesis, structure, and application in ring-opening polymerization of L-lactide. Petrus R; Sobota P Dalton Trans; 2013 Oct; 42(38):13838-44. PubMed ID: 23811782 [TBL] [Abstract][Full Text] [Related]
10. Lactide polymerisation with air-stable and highly active zinc complexes with guanidine-pyridine hybrid ligands. Börner J; Flörke U; Huber K; Döring A; Kuckling D; Herres-Pawlis S Chemistry; 2009; 15(10):2362-76. PubMed ID: 19160437 [TBL] [Abstract][Full Text] [Related]
11. A new, simple, and efficient strategy for the preparation of active antifungal biodegradable materials via ring-opening polymerization of l-lactide with zinc aryloxides. Petrus R; Sobota P Dalton Trans; 2019 Jun; 48(23):8193-8208. PubMed ID: 31090768 [TBL] [Abstract][Full Text] [Related]
12. Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide. Chmura AJ; Davidson MG; Frankis CJ; Jones MD; Lunn MD Chem Commun (Camb); 2008 Mar; (11):1293-5. PubMed ID: 18389111 [TBL] [Abstract][Full Text] [Related]
13. Next Generation of Zinc Bisguanidine Polymerization Catalysts towards Highly Crystalline, Biodegradable Polyesters. Hermann A; Hill S; Metz A; Heck J; Hoffmann A; Hartmann L; Herres-Pawlis S Angew Chem Int Ed Engl; 2020 Nov; 59(48):21778-21784. PubMed ID: 32954634 [TBL] [Abstract][Full Text] [Related]
14. Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure. Kember MR; Knight PD; Reung PT; Williams CK Angew Chem Int Ed Engl; 2009; 48(5):931-3. PubMed ID: 19115338 [No Abstract] [Full Text] [Related]
15. Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms. Ovitt TM; Coates GW J Am Chem Soc; 2002 Feb; 124(7):1316-26. PubMed ID: 11841301 [TBL] [Abstract][Full Text] [Related]
16. Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts. Culkin DA; Jeong W; Csihony S; Gomez ED; Balsara NP; Hedrick JL; Waymouth RM Angew Chem Int Ed Engl; 2007; 46(15):2627-30. PubMed ID: 17330912 [No Abstract] [Full Text] [Related]
17. Metalloenzyme-mimicking supramolecular catalyst for highly active and selective intramolecular alkyne carboxylation. Lee LC; Zhao Y J Am Chem Soc; 2014 Apr; 136(15):5579-82. PubMed ID: 24689781 [TBL] [Abstract][Full Text] [Related]
18. Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes: exploration of a chain-end control mechanism. Nomura N; Ishii R; Akakura M; Aoi K J Am Chem Soc; 2002 May; 124(21):5938-9. PubMed ID: 12022816 [TBL] [Abstract][Full Text] [Related]
19. Symmetrical and unsymmetrical dizinc complexes as models for the active sites of hydrolytic enzymes. Jarenmark M; Kappen S; Haukka M; Nordlander E Dalton Trans; 2008 Feb; (8):993-6. PubMed ID: 18274677 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, characterization, and catalysis of mixed-ligand lithium aggregates, excellent initiators for the ring-opening polymerization of L-lactide. Ko BT; Lin CC J Am Chem Soc; 2001 Aug; 123(33):7973-7. PubMed ID: 11506552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]