These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12357820)

  • 1. Colorimetric SNP analysis using oligonucleotide-modified nanoparticles.
    Ihara T; Chikaura Y; Tanaka S; Jyo A
    Chem Commun (Camb); 2002 Sep; (18):2152-3. PubMed ID: 12357820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics of labeled oligonucleotide probes used for the detection of point mutations in DNA.
    Winter S; Kirschstein S; Miller DP
    Nucleosides Nucleotides; 1999 Mar; 18(3):411-23. PubMed ID: 10408923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold-nanorod-based colorimetric and fluorescent approach for sensitive and specific assay of disease-related gene and mutation.
    Wang W; Zhao Y; Jin Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11741-6. PubMed ID: 24151993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of Hairpin DNA-Functionalized Gold Nanoparticles for Imaging mRNA in Living Cells.
    Jackson SR; Wong AC; Travis AR; Catrina IE; Bratu DP; Wright DW; Jayagopal A
    Methods Enzymol; 2016; 572():87-103. PubMed ID: 27241751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of DNA-modified nanoparticles and preliminary study for colorimetric SNP analysis using their selective aggregations.
    Ihara T; Tanaka S; Chikaura Y; Jyo A
    Nucleic Acids Res; 2004 Jul; 32(12):e105. PubMed ID: 15254253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles.
    Li H; Rothberg L
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14036-9. PubMed ID: 15381774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of a single DNA base-pair mismatch using an anthracene-tagged fluorescent probe.
    Moran N; Bassani DM; Desvergne JP; Keiper S; Lowden PA; Vyle JS; Tucker JH
    Chem Commun (Camb); 2006 Dec; (48):5003-5. PubMed ID: 17146508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Labeled Oligonucleotides Showing Fluorescence Changes Upon Hybridization with Target Nucleic Acids.
    Hwang GT
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29316733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allele specific C-bulge probes with one unique fluorescent molecule discriminate the single nucleotide polymorphism in DNA.
    Takei F; Suda H; Hagihara M; Zhang J; Kobori A; Nakatani K
    Chemistry; 2007; 13(16):4452-7. PubMed ID: 17352435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-labeled oligonucleotide probe for sensing adenosine via FRET: a novel alternative to SNPs genotyping.
    Saito Y; Bag SS; Kusakabe Y; Nagai C; Matsumoto K; Mizuno E; Kodate S; Suzuka I; Saito I
    Chem Commun (Camb); 2007 Jun; (21):2133-5. PubMed ID: 17520113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy.
    Marmé N; Friedrich A; Müller M; Nolte O; Wolfrum J; Hoheisel JD; Sauer M; Knemeyer JP
    Nucleic Acids Res; 2006 Jul; 34(13):e90. PubMed ID: 16870719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A colorimetric method for point mutation detection using high-fidelity DNA ligase.
    Li J; Chu X; Liu Y; Jiang JH; He Z; Zhang Z; Shen G; Yu RQ
    Nucleic Acids Res; 2005 Oct; 33(19):e168. PubMed ID: 16257979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of interactions between structured nucleic acids by fluorescence resonance energy transfer (FRET): selection of target sites for functional nucleic acids.
    Ota N; Hirano K; Warashina M; Andrus A; Mullah B; Hatanaka K; Taira K
    Nucleic Acids Res; 1998 Feb; 26(3):735-43. PubMed ID: 9443965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylethynylpyrene-labeled oligonucleotide probes for excimer fluorescence SNP analysis of 23S rRNA gene in clarithromycin-resistant Helicobacter pylori strains.
    Prokhorenko IA; Malakhov AD; Kozlova AA; Momynaliev K; Govorun VM; Korshun VA
    Mutat Res; 2006 Jul; 599(1-2):144-51. PubMed ID: 16597449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective two-color SNP typing based on photoligation.
    Ami T; Fujimoto K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):325-6. PubMed ID: 18029718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ribonuclease-dependent cleavable beacon primer triggering DNA amplification for single nucleotide mutation detection with ultrahigh sensitivity and selectivity.
    Ding X; Yin K; Chen J; Wang K; Liu C
    Chem Commun (Camb); 2019 Oct; 55(84):12623-12626. PubMed ID: 31580354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes.
    Marras SA; Kramer FR; Tyagi S
    Nucleic Acids Res; 2002 Nov; 30(21):e122. PubMed ID: 12409481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Junction probes - sequence specific detection of nucleic acids via template enhanced hybridization processes.
    Nakayama S; Yan L; Sintim HO
    J Am Chem Soc; 2008 Sep; 130(38):12560-1. PubMed ID: 18759403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of base-discriminating fluorescent (BDF) nucleobase for SNP typing.
    Saito Y; Kanatani K; Ochi Y; Okamoto A; Saito I
    Nucleic Acids Symp Ser (Oxf); 2004; (48):243-4. PubMed ID: 17150569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthracene based base-discriminating fluorescent oligonucleotide probes for SNPs typing: synthesis and photophysical properties.
    Saito Y; Motegi K; Bag SS; Saito I
    Bioorg Med Chem; 2008 Jan; 16(1):107-13. PubMed ID: 16890446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.