BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 12358405)

  • 1. Biaxial mechanical properties of porcine ascending aortic wall tissue.
    Nicosia MA; Kasalko JS; Cochran RP; Einstein DR; Kunzelman KS
    J Heart Valve Dis; 2002 Sep; 11(5):680-6; discussion 686-7. PubMed ID: 12358405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant material property differences between the porcine ascending aorta and aortic sinuses.
    Gundiah N; Matthews PB; Karimi R; Azadani A; Guccione J; Guy TS; Saloner D; Tseng EE
    J Heart Valve Dis; 2008 Nov; 17(6):606-13. PubMed ID: 19137790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric mechanical properties of porcine aortic sinuses.
    Gundiah N; Kam K; Matthews PB; Guccione J; Dwyer HA; Saloner D; Chuter TA; Guy TS; Ratcliffe MB; Tseng EE
    Ann Thorac Surg; 2008 May; 85(5):1631-8. PubMed ID: 18442553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-vitro assessment of the functional performance of the decellularized intact porcine aortic root.
    Korossis SA; Wilcox HE; Watterson KG; Kearney JN; Ingham E; Fisher J
    J Heart Valve Dis; 2005 May; 14(3):408-21; discussion 422. PubMed ID: 15974537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal shear properties of fresh porcine aortic valve cusps: implications for normal valve function.
    Talman EA; Boughner DR
    J Heart Valve Dis; 1996 Mar; 5(2):152-9. PubMed ID: 8665007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An assessment of the mechanical properties of leaflets from four second-generation porcine bioprostheses with biaxial testing techniques.
    Mayne AS; Christie GW; Smaill BH; Hunter PJ; Barratt-Boyes BG
    J Thorac Cardiovasc Surg; 1989 Aug; 98(2):170-80. PubMed ID: 2755150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pulmonary bioprosthetic heart valve: its unsuitability for use as an aortic valve replacement.
    Jennings LM; Butterfield M; Booth C; Watterson KG; Fisher J
    J Heart Valve Dis; 2002 Sep; 11(5):668-78; discussion 679. PubMed ID: 12358404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aortic valve leaflet mechanical properties facilitate diastolic valve function.
    Koch TM; Reddy BD; Zilla P; Franz T
    Comput Methods Biomech Biomed Engin; 2010; 13(2):225-34. PubMed ID: 19657802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of surgical glues used in aortic root replacement.
    Azadani AN; Matthews PB; Ge L; Shen Y; Jhun CS; Guy TS; Tseng EE
    Ann Thorac Surg; 2009 Apr; 87(4):1154-60. PubMed ID: 19324142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local mechanical and structural properties of healthy and diseased human ascending aorta tissue.
    Choudhury N; Bouchot O; Rouleau L; Tremblay D; Cartier R; Butany J; Mongrain R; Leask RL
    Cardiovasc Pathol; 2009; 18(2):83-91. PubMed ID: 18402840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical perspective on the porcine pulmonary root prior to Ross remodeling.
    Matthews PB; Kim B; Azadani AN; Guy TS; Guccione JM; Ge L; Tseng EE
    J Heart Valve Dis; 2009 Nov; 18(6):682-90. PubMed ID: 20099718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical testing of cryopreserved aortic allografts. Comparison with xenografts and fresh tissue.
    Vesely I; Gonzalez-Lavin L; Graf D; Boughner D
    J Thorac Cardiovasc Surg; 1990 Jan; 99(1):119-23. PubMed ID: 2294344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the biaxial mechanical properties of the layers of the aortic valve leaflet.
    Stella JA; Sacks MS
    J Biomech Eng; 2007 Oct; 129(5):757-66. PubMed ID: 17887902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of species, environmental factors, and tissue cellularity on calcification of porcine aortic wall tissue.
    Meuris B; Ozaki S; Herijgers P; Verbeken E; Flameng W
    Semin Thorac Cardiovasc Surg; 2001 Oct; 13(4 Suppl 1):99-105. PubMed ID: 11805957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue-induced changes to the biaxial mechanical properties of glutaraldehyde-fixed porcine aortic valve leaflets.
    Christie GW; Gross JF; Eberhardt CE
    Semin Thorac Cardiovasc Surg; 1999 Oct; 11(4 Suppl 1):201-5. PubMed ID: 10660193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve.
    Smuts AN; Blaine DC; Scheffer C; Weich H; Doubell AF; Dellimore KH
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):85-98. PubMed ID: 21094482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.