These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12358431)

  • 1. Characterization of a novel antibacterial agent that inhibits bacterial translation.
    Böddeker N; Bahador G; Gibbs C; Mabery E; Wolf J; Xu L; Watson J
    RNA; 2002 Sep; 8(9):1120-8. PubMed ID: 12358431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal alterations contribute to bacterial resistance against the dipeptide antibiotic TAN 1057.
    Limburg E; Gahlmann R; Kroll HP; Beyer D
    Antimicrob Agents Chemother; 2004 Feb; 48(2):619-22. PubMed ID: 14742220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition by thiopeptin of bacterial protein synthesis.
    Liou YF; Kinoshita T; Tanaka N
    Jpn J Microbiol; 1976 Jun; 20(3):233-40. PubMed ID: 787605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cis-acting resistance peptides reveal dual ribosome inhibitory action of the macrolide josamycin.
    Lovmar M; Vimberg V; Lukk E; Nilsson K; Tenson T; Ehrenberg M
    Biochimie; 2009 Aug; 91(8):989-95. PubMed ID: 19463886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic.
    Scaiola A; Leibundgut M; Boehringer D; Caspers P; Bur D; Locher HH; Rueedi G; Ritz D
    Sci Rep; 2019 Apr; 9(1):5634. PubMed ID: 30948752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TAN-1057 A-D, new antibiotics with potent antibacterial activity against methicillin-resistant Staphylococcus aureus. Taxonomy, fermentation and biological activity.
    Katayama N; Fukusumi S; Funabashi Y; Iwahi T; Ono H
    J Antibiot (Tokyo); 1993 Apr; 46(4):606-13. PubMed ID: 8501003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state.
    Osterman IA; Khabibullina NF; Komarova ES; Kasatsky P; Kartsev VG; Bogdanov AA; Dontsova OA; Konevega AL; Sergiev PV; Polikanov YS
    Nucleic Acids Res; 2017 Jul; 45(12):7507-7514. PubMed ID: 28505372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the initiation of translation by a factor isolated from Escherichia coli cells.
    Clark VL
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):1181-4. PubMed ID: 6987666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of protein synthesis by streptogramins and related antibiotics.
    Cocito C; Di Giambattista M; Nyssen E; Vannuffel P
    J Antimicrob Chemother; 1997 May; 39 Suppl A():7-13. PubMed ID: 9511056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some properties and the possible role of intrinsic ATPase of rat liver 80S ribosomes in peptide bond elongation.
    Ogata K; Ohno R; Terao K; Iwasaki K; Endo Y
    J Biochem; 2000 Feb; 127(2):221-31. PubMed ID: 10731688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel.
    Kannan K; Vázquez-Laslop N; Mankin AS
    Cell; 2012 Oct; 151(3):508-20. PubMed ID: 23101624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a high-throughput screening assay for inhibitors of elongation factor p and ribosomal peptidyl transferase activity.
    Swaney S; McCroskey M; Shinabarger D; Wang Z; Turner BA; Parker CN
    J Biomol Screen; 2006 Oct; 11(7):736-42. PubMed ID: 16928980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soluble factors required for eukaryotic protein synthesis.
    Weissbach H; Ochoa S
    Annu Rev Biochem; 1976; 45():191-216. PubMed ID: 786149
    [No Abstract]   [Full Text] [Related]  

  • 14. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assays for the identification of inhibitors targeting specific translational steps.
    Brandi L; Dresios J; Gualerzi CO
    Methods Mol Med; 2008; 142():87-105. PubMed ID: 18437308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center.
    Kloss P; Xiong L; Shinabarger DL; Mankin AS
    J Mol Biol; 1999 Nov; 294(1):93-101. PubMed ID: 10556031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both gram-positive and gram-negative bacteria.
    McNicholas PM; Najarian DJ; Mann PA; Hesk D; Hare RS; Shaw KJ; Black TA
    Antimicrob Agents Chemother; 2000 May; 44(5):1121-6. PubMed ID: 10770739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A specific inhibitor of polypeptide-chain initiation in Escherichia coli.
    Lee-Huang S; Lee H; Ochoa S
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2874-8. PubMed ID: 4583026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Studies on the mechanism of translocation in ribosomes. V. Comparison of the effect of antibiotic inhibitors of ribosomes on "enzymatic" and "non-enzymatic" translation].
    Kostiashkina OE; Asatrian LS; Gavrilova LP; Spirin AS
    Mol Biol (Mosk); 1975; 9(5):775-82. PubMed ID: 765776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanisms of action for beta-lactam antibiotics and inhibitors of bacterial protein synthesis.
    Wilkins J; Fareau GE; Patzakis MJ
    Clin Orthop Relat Res; 1984 Nov; (190):23-30. PubMed ID: 6386258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.