These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12358464)

  • 41. Analysis of folding and unfolding reactions of cytochrome b5.
    Manyusa S; Mortuza G; Whitford D
    Biochemistry; 1999 Oct; 38(43):14352-62. PubMed ID: 10572010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetics and thermodynamics of the unfolding and refolding of the three-stranded alpha-helical coiled coil, Lpp-56.
    Dragan AI; Potekhin SA; Sivolob A; Lu M; Privalov PL
    Biochemistry; 2004 Nov; 43(47):14891-900. PubMed ID: 15554696
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unfolding and refolding pathways of a major kinetic trap in the oxidative folding of alpha-lactalbumin.
    Salamanca S; Chang JY
    Biochemistry; 2005 Jan; 44(2):744-50. PubMed ID: 15641801
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced water absorption of wheat gluten by hydrothermal treatment followed by microbial transglutaminase reaction.
    Liu S; Zhang D; Liu L; Wang M; Du G; Chen J
    J Sci Food Agric; 2010 Mar; 90(4):658-63. PubMed ID: 20355095
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Importance of thiol-functionalized molecules for the structure and properties of compression-molded glassy wheat gluten bioplastics.
    Jansens KJ; Lagrain B; Brijs K; Goderis B; Smet M; Delcour JA
    J Agric Food Chem; 2013 Nov; 61(44):10516-24. PubMed ID: 24131364
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Control of α-Lactalbumin Aggregation by Modulation of Temperature and Concentration of Calcium and Cysteine.
    Nielsen LR; Nielsen SB; Zhao Z; Olsen K; Nielsen JH; Lund MN
    J Agric Food Chem; 2018 Jul; 66(27):7110-7120. PubMed ID: 29916707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of heat treatment on conformation and aggregation properties of wheat bran dietary fiber-gluten protein.
    Bao Q; Yan J; Ma S
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127164. PubMed ID: 37778582
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of Self-Healing Double-Network Hydrogels: Enhancement of the Strength of Wheat Gluten Hydrogels by In Situ Metal-Catechol Coordination.
    Liu C; McClements DJ; Li M; Xiong L; Sun Q
    J Agric Food Chem; 2019 Jun; 67(23):6508-6516. PubMed ID: 31117498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of konjac glucomannan on heat-induced changes of wheat gluten structure.
    Wang Y; Chen Y; Zhou Y; Nirasawa S; Tatsumi E; Li X; Cheng Y
    Food Chem; 2017 Aug; 229():409-416. PubMed ID: 28372193
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glass transition of wheat gluten plasticized with water, glycerol, or sorbitol.
    Pouplin M; Redl A; Gontard N
    J Agric Food Chem; 1999 Feb; 47(2):538-43. PubMed ID: 10563929
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of casein and egg white proteins on the structure of wheat gluten-based protein-rich food.
    Wouters AG; Rombouts I; Lagrain B; Delcour JA
    J Sci Food Agric; 2016 Feb; 96(3):757-63. PubMed ID: 25704643
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein insolubilization and thiol oxidation in sulfite-treated wheat gluten films during aging at various temperatures and relative humidities.
    Morel MH; Bonicel J; Micard V; Guilbert S
    J Agric Food Chem; 2000 Feb; 48(2):186-92. PubMed ID: 10691614
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Designing new materials from wheat protein.
    Woerdeman DL; Veraverbeke WS; Parnas RS; Johnson D; Delcour JA; Verpoest I; Plummer CJ
    Biomacromolecules; 2004; 5(4):1262-9. PubMed ID: 15244439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of hydrolysates derived from enzymatic hydrolysis of wheat gluten.
    Wang JS; Zhao MM; Zhao QZ; Bao Y; Jiang YM
    J Food Sci; 2007 Mar; 72(2):C103-7. PubMed ID: 17995823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodegradability of wheat gluten based bioplastics.
    Domenek S; Feuilloley P; Gratraud J; Morel MH; Guilbert S
    Chemosphere; 2004 Jan; 54(4):551-9. PubMed ID: 14581057
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of ascorbic acid in dough: reaction of oxidized glutathione with reactive thiol groups of wheat glutelin.
    Koehler P
    J Agric Food Chem; 2003 Aug; 51(17):4954-9. PubMed ID: 12903952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in wheat kernel proteins induced by microwave treatment.
    Lamacchia C; Landriscina L; D'Agnello P
    Food Chem; 2016 Apr; 197(Pt A):634-40. PubMed ID: 26616997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori.
    Devi VS; Sprecher CB; Hunziker P; Mittl PR; Bosshard HR; Jelesarov I
    Biochemistry; 2006 Feb; 45(6):1599-607. PubMed ID: 16460007
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Properties of extruded vital wheat gluten sheets with sodium hydroxide and salicylic acid.
    Ullsten NH; Cho SW; Spencer G; Gällstedt M; Johansson E; Hedenqvist MS
    Biomacromolecules; 2009 Mar; 10(3):479-88. PubMed ID: 19178277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactions between soy protein hydrolyzates and wheat proteins in noodle making dough.
    Guo X; Sun X; Zhang Y; Wang R; Yan X
    Food Chem; 2018 Apr; 245():500-507. PubMed ID: 29287401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.