BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12358476)

  • 1. Reinvestigation of the chemical structure of bitter-tasting quinizolate and homoquinizolate and studies on their Maillard-type formation pathways using suitable (13)C-labeling experiments.
    Frank O; Hofmann T
    J Agric Food Chem; 2002 Oct; 50(21):6027-36. PubMed ID: 12358476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory activity, chemical structure, and synthesis of Maillard generated bitter-tasting 1-oxo-2,3-dihydro-1H-indolizinium-6-olates.
    Frank O; Jezussek M; Hofmann T
    J Agric Food Chem; 2003 Apr; 51(9):2693-9. PubMed ID: 12696959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of an intense bitter-tasting 1H,4H-quinolizinium-7-olate by application of the taste dilution analysis, a novel bioassay for the screening and identification of taste-active compounds in foods.
    Frank O; Ottinger H; Hofmann T
    J Agric Food Chem; 2001 Jan; 49(1):231-8. PubMed ID: 11170582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taste-active maillard reaction products: the "tasty" world of nonvolatile maillard reaction products.
    Hofmann T
    Ann N Y Acad Sci; 2005 Jun; 1043():20-9. PubMed ID: 16037218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taste-Active Maillard Reaction Products in Roasted Garlic (Allium sativum).
    Wakamatsu J; Stark TD; Hofmann T
    J Agric Food Chem; 2016 Jul; 64(29):5845-54. PubMed ID: 27381763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their identification in roasted coffee by means of LC-MS/MS.
    Frank O; Blumberg S; Kunert C; Zehentbauer G; Hofmann T
    J Agric Food Chem; 2007 Mar; 55(5):1945-54. PubMed ID: 17269788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and structure determination of a novel Maillard-derived sweetness enhancer by application of the comparative taste dilution analysis (cTDA).
    Ottinger H; Soldo T; Hofmann T
    J Agric Food Chem; 2003 Feb; 51(4):1035-41. PubMed ID: 12568569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of hydrophilic interaction liquid chromatography/comparative taste dilution analysis for identification of a bitter inhibitor by a combinatorial approach based on Maillard reaction chemistry.
    Soldo T; Hofmann T
    J Agric Food Chem; 2005 Nov; 53(23):9165-71. PubMed ID: 16277418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of bitter compounds in whole wheat bread.
    Jiang D; Peterson DG
    Food Chem; 2013 Nov; 141(2):1345-53. PubMed ID: 23790923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of L-cysteine on the formation of bitter-tasting aminohexose reductones from glucose and L-proline: identification of a novel furo[2,3-b]thiazine.
    Hofmann T
    J Agric Food Chem; 1999 Nov; 47(11):4763-8. PubMed ID: 10552887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative model studies on the efficiency of precursors in the formation of cooling-active 1-pyrrolidinyl-2-cyclopenten-1-ones and bitter-tasting cyclopenta-[b]azepin-8(1H)-ones.
    Ottinger H; Hofmann T
    J Agric Food Chem; 2002 Aug; 50(18):5156-61. PubMed ID: 12188623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of bitter modulating maillard-catechin reaction products.
    Zhang L; Xia Y; Peterson DG
    J Agric Food Chem; 2014 Aug; 62(33):8470-7. PubMed ID: 25077686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure determination of a novel 3(6H)-pyranone chromophore and clarification of its formation from carbohydrates and primary amino acids.
    Frank O; Heuberger S; Hofmann T
    J Agric Food Chem; 2001 Mar; 49(3):1595-600. PubMed ID: 11312901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidative Maillard Reaction Products Generated in Processed Aged Garlic Extract.
    Wakamatsu J; Stark TD; Hofmann T
    J Agric Food Chem; 2019 Feb; 67(8):2190-2200. PubMed ID: 30715866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinvestigation of the reaction between 2-furancarboxaldehyde and 4-hydroxy-5-methyl-3(2H)-furanone.
    Ravagli A; Boschin G; Scaglioni L; Arnoldi A
    J Agric Food Chem; 1999 Dec; 47(12):4962-9. PubMed ID: 10606559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems.
    Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S
    Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maillard reaction of D-glucose: identification of a colored product with conjugated pyrrole and furanone rings.
    Lerche H; Pischetsrieder M; Severin T
    J Agric Food Chem; 2002 May; 50(10):2984-6. PubMed ID: 11982429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of new heterocyclic nitrogen compounds from glucose-lysine and xylose-lysine maillard model systems.
    Bailey RG; Ames JM; Mann J
    J Agric Food Chem; 2000 Dec; 48(12):6240-6. PubMed ID: 11312797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and RP-HPLC-ESI-MS/MS quantitation of bitter-tasting beta-acid transformation products in beer.
    Haseleu G; Intelmann D; Hofmann T
    J Agric Food Chem; 2009 Aug; 57(16):7480-9. PubMed ID: 19627140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of furanone, pyranone, and new heterocyclic colored compounds from sugar-glycine model Maillard systems.
    Ames JM; Bailey RG; Mann J
    J Agric Food Chem; 1999 Feb; 47(2):438-43. PubMed ID: 10563913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.