BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12359088)

  • 1. Thermal stability of Phaseolus vulgaris leucoagglutinin: a differential scanning calorimetry study.
    Biswas S; Kayastha AM
    J Biochem Mol Biol; 2002 Sep; 35(5):472-5. PubMed ID: 12359088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic characterization of Phaseolus vulgaris leucoagglutinin.
    Biswas S; Kayastha AM
    Protein Pept Lett; 2004 Feb; 11(1):1-7. PubMed ID: 14965272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolding and refolding of leucoagglutinin (PHA-L), an oligomeric lectin from kidney beans (Phaseolus vulgaris).
    Biswas S; Kayastha AM
    Biochim Biophys Acta; 2004 Sep; 1674(1):40-9. PubMed ID: 15342112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH stability study of lectin from black turtle bean (Phaseolus vulgaris) as influenced by guanidinium-HCl and thermal treatment.
    He S; Simpson BK; Ngadi MO; Xue SJ; Shi J; Ma Y
    Protein Pept Lett; 2015; 22(1):45-51. PubMed ID: 25213796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-pH induced structural changes, allergenicity and in vitro digestibility of lectin from black turtle bean (Phaseolus vulgaris L.).
    Zhao J; He S; Tang M; Sun X; Zhang Z; Ye Y; Cao X; Sun H
    Food Chem; 2019 Jun; 283():183-190. PubMed ID: 30722859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential scanning calorimetric and spectroscopic studies on the unfolding of Momordica charantia lectin. Similar modes of thermal and chemical denaturation.
    Kavitha M; Bobbili KB; Swamy MJ
    Biochimie; 2010 Jan; 92(1):58-64. PubMed ID: 19778578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stability and mode of oligomerization of the tetrameric peanut agglutinin: a differential scanning calorimetry study.
    Reddy GB; Bharadwaj S; Surolia A
    Biochemistry; 1999 Apr; 38(14):4464-70. PubMed ID: 10194368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential scanning calorimetric and spectroscopic studies on the thermal and chemical unfolding of cucumber (Cucumis sativus) phloem exudate lectin.
    Nareddy PK; Swamy MJ
    Int J Biol Macromol; 2018 Jan; 106():95-100. PubMed ID: 28778525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and differential scanning calorimetric studies on the unfolding of Trichosanthes dioica seed lectin. Similar modes of thermal and chemical denaturation.
    Kavitha M; Swamy MJ
    Glycoconj J; 2009 Nov; 26(8):1075-84. PubMed ID: 19189214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytohemagglutinin from Phaseolus vulgaris (PHA-E) displays a novel glycan recognition mode using a common legume lectin fold.
    Nagae M; Soga K; Morita-Matsumoto K; Hanashima S; Ikeda A; Yamamoto K; Yamaguchi Y
    Glycobiology; 2014 Apr; 24(4):368-78. PubMed ID: 24436051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact residual structure in lentil lectin at pH 2.
    Marcos MJ; Villar E; Gavilanes F; Zhadan GG; Shnyrov VL
    Eur J Biochem; 2000 Apr; 267(7):2127-32. PubMed ID: 10727954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight of pH-shifting as an effective pretreatment to reduce the antigenicity of lectin from red kidney bean (Phaseolus vulgaris L.) combining with autoclaving treatments: The structure investigation.
    Gao K; He S; Chen H; Wang J; Li X; Sun H; Zhang Y
    Food Chem; 2024 Feb; 434():137429. PubMed ID: 37716149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential scanning calorimetry of the irreversible denaturation of Escherichia coli glucosamine-6-phosphate deaminase.
    Hernández-Arana A; Rojo-Domínguez A; Altamirano MM; Calcagno ML
    Biochemistry; 1993 Apr; 32(14):3644-8. PubMed ID: 8466906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational study of red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) by tryptophan fluorescence and differential scanning calorimetry.
    Yin SW; Tang CH; Yang XQ; Wen QB
    J Agric Food Chem; 2011 Jan; 59(1):241-8. PubMed ID: 21126074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of a lectin from Phaseolus vulgaris cv. (Anasazi beans).
    Sharma A; Ng TB; Wong JH; Lin P
    J Biomed Biotechnol; 2009; 2009():929568. PubMed ID: 19343172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic study on the irreversible thermal denaturation of lentil lectin.
    Shnyrov VL; Marcos MJ; Villar E
    Biochem Mol Biol Int; 1996 Jul; 39(4):647-56. PubMed ID: 8843331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent thermal transitions of lentil lectin.
    Marcos MJ; Chehín R; Arrondo JL; Zhadan GG; Villar E; Shnyrov VL
    FEBS Lett; 1999 Jan; 443(2):192-6. PubMed ID: 9989603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An irreversible and kinetically controlled process: thermal induced denaturation of L-2-hydroxyisocaproate dehydrogenase from Lactobacillus confusus.
    Bao L; Chatterjee S; Lohmer S; Schomburg D
    Protein J; 2007 Apr; 26(3):143-51. PubMed ID: 17205397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature and pH on the structure and stability of tumor-specific lectin jacalin and insights into the location of its tryptophan residues: CD, DSC and fluorescence studies.
    Banerjee S; Naresh M; Swamy MJ
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129451. PubMed ID: 38232886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A glucuronic acid binding leguminous lectin with mitogenic activity toward mouse splenocytes.
    Chan YS; Wong JH; Ng TB
    Protein Pept Lett; 2011 Feb; 18(2):194-202. PubMed ID: 21054267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.