These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 12359392)
1. Gender differences in the effect of salinity on aldicarb uptake, elimination, and in vitro metabolism in Japanese medaka, Oryzias latipes. El-Alfy AT; Bernache E; Schlenk D Aquat Toxicol; 2002 Dec; 61(3-4):225-32. PubMed ID: 12359392 [TBL] [Abstract][Full Text] [Related]
2. Potential mechanisms of the enhancement of aldicarb toxicity to Japanese medaka, Oryzias latipes, at high salinity. El-Alfy A; Schlenk D Toxicol Appl Pharmacol; 1998 Sep; 152(1):175-83. PubMed ID: 9772213 [TBL] [Abstract][Full Text] [Related]
3. Effect of 17beta-estradiol and testosterone on the expression of flavin-containing monooxygenase and the toxicity of aldicarb to Japanese medaka, Oryzias latipes. El-Alfy AT; Schlenk D Toxicol Sci; 2002 Aug; 68(2):381-8. PubMed ID: 12151634 [TBL] [Abstract][Full Text] [Related]
4. Characterization of salinity-enhanced toxicity of aldicarb to Japanese medaka: sexual and developmental differences. El-Alfy AT; Grisle S; Schlenk D Environ Toxicol Chem; 2001 Sep; 20(9):2093-8. PubMed ID: 11521840 [TBL] [Abstract][Full Text] [Related]
5. Effects of salinity on aldicarb toxicity in juvenile rainbow trout (Oncorhynchus mykiss) and striped bass (Morone saxatilis x chrysops). Wang J; Grisle S; Schlenk D Toxicol Sci; 2001 Dec; 64(2):200-7. PubMed ID: 11719702 [TBL] [Abstract][Full Text] [Related]
6. Use of aquatic organisms as models to determine the in vivo contribution of flavin-containing monooxygenases in xenobiotic biotransformation. Schlenk D Mol Mar Biol Biotechnol; 1995 Dec; 4(4):323-30. PubMed ID: 8541983 [TBL] [Abstract][Full Text] [Related]
7. Does Japanese medaka (Oryzias latipes) exhibit a gill Na(+)/K(+)-ATPase isoform switch during salinity change? Bollinger RJ; Madsen SS; Bossus MC; Tipsmark CK J Comp Physiol B; 2016 May; 186(4):485-501. PubMed ID: 26920794 [TBL] [Abstract][Full Text] [Related]
8. In vitro sulfoxidation of aldicarb by hepatic microsomes of channel catfish, Ictalurus punctatus. Perkins EJ; el-Alfy A; Schlenk D Toxicol Sci; 1999 Mar; 48(1):67-73. PubMed ID: 10330685 [TBL] [Abstract][Full Text] [Related]
9. Expression profiles of branchial FXYD proteins in the brackish medaka Oryzias dancena: a potential saltwater fish model for studies of osmoregulation. Yang WK; Kang CK; Chang CH; Hsu AD; Lee TH; Hwang PP PLoS One; 2013; 8(1):e55470. PubMed ID: 23383199 [TBL] [Abstract][Full Text] [Related]
10. Differential expression of branchial Na+/K(+)-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Kang CK; Tsai SC; Lee TH; Hwang PP Comp Biochem Physiol A Mol Integr Physiol; 2008 Dec; 151(4):566-75. PubMed ID: 18692588 [TBL] [Abstract][Full Text] [Related]
11. Salinity-dependent expression of a Na+, K+, 2Cl- cotransporter in gills of the brackish medaka Oryzias dancena: a molecular correlate for hyposmoregulatory endurance. Kang CK; Tsai HJ; Liu CC; Lee TH; Hwang PP Comp Biochem Physiol A Mol Integr Physiol; 2010 Sep; 157(1):7-18. PubMed ID: 20576485 [TBL] [Abstract][Full Text] [Related]
12. A Stenohaline Medaka, Oryzias woworae, Increases Expression of Gill Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-) Cotransporter 1 to Tolerate Osmotic Stress. Juo JJ; Kang CK; Yang WK; Yang SY; Lee TH Zoolog Sci; 2016 Aug; 33(4):414-25. PubMed ID: 27498801 [TBL] [Abstract][Full Text] [Related]
13. Effects of salinity on the toxicity and biotransformation of L-selenomethionine in Japanese medaka (Oryzias latipes) embryos: mechanisms of oxidative stress. Lavado R; Shi D; Schlenk D Aquat Toxicol; 2012 Feb; 108():18-22. PubMed ID: 22265608 [TBL] [Abstract][Full Text] [Related]
14. Sound production in Japanese medaka (Oryzias latipes) and its alteration by exposure to aldicarb and copper sulfate. Kang IJ; Qiu X; Moroishi J; Oshima Y Chemosphere; 2017 Aug; 181():530-535. PubMed ID: 28463727 [TBL] [Abstract][Full Text] [Related]
15. In vivo acetylcholinesterase inhibition, metabolism, and toxicokinetics of aldicarb in channel catfish: role of biotransformation in acute toxicity. Perkins EJ; Schlenk D Toxicol Sci; 2000 Feb; 53(2):308-15. PubMed ID: 10696779 [TBL] [Abstract][Full Text] [Related]
16. Functional dynamics of claudin expression in Japanese medaka (Oryzias latipes): Response to environmental salinity. Bossus MC; Madsen SS; Tipsmark CK Comp Biochem Physiol A Mol Integr Physiol; 2015 Sep; 187():74-85. PubMed ID: 25957710 [TBL] [Abstract][Full Text] [Related]
17. The oxidative metabolism of aldicarb in pigs: in vivo-in vitro comparison. Montesissa C; Huveneers MB; Hoogenboom LA; Amorena M; De Liguoro M; Lucisano A Drug Metabol Drug Interact; 1994; 11(2):127-38. PubMed ID: 12369596 [TBL] [Abstract][Full Text] [Related]
18. Retention of ion channel genes expression increases Japanese medaka survival during seawater reacclimation. Liao BK; Lai YW; Liu ST; Chou MY J Comp Physiol B; 2023 Jan; 193(1):81-93. PubMed ID: 36264377 [TBL] [Abstract][Full Text] [Related]
19. Regulation of PGC-1α of the Mitochondrial Energy Metabolism Pathway in the Gills of Indian Medaka ( Ranasinghe N; Chen WZ; Hu YC; Gamage L; Lee TH; Ho CW Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003377 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of fenthion activation in rainbow trout (Oncorhynchus mykiss) acclimated to hypersaline environments. Lavado R; Rimoldi JM; Schlenk D Toxicol Appl Pharmacol; 2009 Mar; 235(2):143-52. PubMed ID: 19111563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]