These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1236016)

  • 1. Superposition of chromatic error and beam broadening in transmission electron microscopy of thick carbon and organic specimens.
    Reimer L; Gentsch P
    Ultramicroscopy; 1975 Jul; 1(1):1-5. PubMed ID: 1236016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission electron microscopy of thick polymer and biological specimens.
    Egerton RF; Hayashida M; Malac M
    Micron; 2023 Jun; 169():103449. PubMed ID: 37001476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thick specimens in the CEM and STEM. Resolution and image formation.
    Groves T
    Ultramicroscopy; 1975 Jul; 1(1):15-31. PubMed ID: 1236017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-beam broadening in amorphous carbon films in low-energy scanning transmission electron microscopy.
    Drees H; Müller E; Dries M; Gerthsen D
    Ultramicroscopy; 2018 Feb; 185():65-71. PubMed ID: 29195139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aperture contrast in thick amorphous specimens using scanning transmission electron microscopy.
    Smith DJ; Cowley JM
    Ultramicroscopy; 1975 Dec; 1(2):127-36. PubMed ID: 1236025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practical image restoration of thick biological specimens using multiple focus levels in transmission electron microscopy.
    Han KF; Sedat JW; Agard DA
    J Struct Biol; 1997 Dec; 120(3):237-44. PubMed ID: 9441929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple scattering effects of MeV electrons in very thick amorphous specimens.
    Wang F; Zhang HB; Cao M; Nishi R; Takaoka A
    Ultramicroscopy; 2010 Feb; 110(3):259-68. PubMed ID: 20079570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of image formation for thick biological specimens: exit wavefront reconstruction and electron energy-loss spectroscopic imaging.
    Han KF; Sedat JW; Agard DA
    J Microsc; 1995 May; 178(Pt 2):107-19. PubMed ID: 7783184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choice of operating voltage for a transmission electron microscope.
    Egerton RF
    Ultramicroscopy; 2014 Oct; 145():85-93. PubMed ID: 24679438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional microscopy for multi-scale imaging: from nano to macro.
    Jinnai H
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i3. PubMed ID: 25359830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement.
    Bouwer JC; Mackey MR; Lawrence A; Deerinck TJ; Jones YZ; Terada M; Martone ME; Peltier S; Ellisman MH
    J Struct Biol; 2004 Dec; 148(3):297-306. PubMed ID: 15522778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast in the electron spectroscopic imaging mode of a TEM. IV. Thick specimens imaged by the most-probable energy loss.
    Reimer L; Rennekamp R; Fromm I; Langenfeld M
    J Microsc; 1991 Apr; 162(Pt 1):3-14. PubMed ID: 1870112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules.
    Peet MJ; Henderson R; Russo CJ
    Ultramicroscopy; 2019 Aug; 203():125-131. PubMed ID: 30773415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers.
    de Jonge N
    Ultramicroscopy; 2018 Apr; 187():113-125. PubMed ID: 29428430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM.
    Dickerson JL; Lu PH; Hristov D; Dunin-Borkowski RE; Russo CJ
    Ultramicroscopy; 2022 Jul; 237():113510. PubMed ID: 35367900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of elastic and inelastic scattering in giving electrons tortuous paths in matter.
    Turner JE; Hamm RN
    Health Phys; 1995 Sep; 69(3):378-84. PubMed ID: 7635734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elemental imaging and resolution in energy-filtered conventional electron microscopy.
    Shuman H; Chang CF; Somlyo AP
    Ultramicroscopy; 1986; 19(2):121-33. PubMed ID: 3739050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image blurring of thick specimens due to MeV transmission electron scattering: a Monte Carlo study.
    Wang F; Zhang HB; Cao M; Nishi R; Takaoka A
    J Electron Microsc (Tokyo); 2011; 60(5):315-20. PubMed ID: 21771806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Beam Broadening on the Spatial Resolution of Annular Dark Field Scanning Transmission Electron Microscopy.
    de Jonge N; Verch A; Demers H
    Microsc Microanal; 2018 Feb; 24(1):8-16. PubMed ID: 29485023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.