These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12361213)

  • 1. Minimizing delivery time and monitor units in static IMRT by leaf-sequencing.
    Crooks SM; McAven LF; Robinson DF; Xing L
    Phys Med Biol; 2002 Sep; 47(17):3105-16. PubMed ID: 12361213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for photon beam Monte Carlo multileaf collimator particle transport.
    Siebers JV; Keall PJ; Kim JO; Mohan R
    Phys Med Biol; 2002 Sep; 47(17):3225-49. PubMed ID: 12361220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Tongue-and-groove' effect in intensity modulated radiotherapy with static multileaf collimator fields.
    Que W; Kung J; Dai J
    Phys Med Biol; 2004 Feb; 49(3):399-405. PubMed ID: 15012009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmental and dynamic intensity-modulated radiotherapy delivery techniques for micro-multileaf collimator.
    Agazaryan N; Solberg TD
    Med Phys; 2003 Jul; 30(7):1758-67. PubMed ID: 12906193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved MLC segmentation algorithm and software for step-and-shoot IMRT delivery without tongue-and-groove error.
    Luan S; Wang C; Chen DZ; Hu XS; Naqvi SA; Wu X; Yu CX
    Med Phys; 2006 May; 33(5):1199-212. PubMed ID: 16752555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent monitor unit calculation for intensity modulated radiotherapy using the MIMiC multileaf collimator.
    Chen Z; Xing L; Nath R
    Med Phys; 2002 Sep; 29(9):2041-51. PubMed ID: 12349925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing the number of monitor units in multileaf collimator field segmentation.
    Kalinowski T
    Phys Med Biol; 2005 Mar; 50(6):1147-61. PubMed ID: 15798314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel unidirectional intensity map segmentation method for step-and-shoot IMRT delivery with segment shape control.
    Artacho JM; Mellado X; Tobías G; Cruz S; Hernández M
    Phys Med Biol; 2009 Feb; 54(3):569-89. PubMed ID: 19124955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DMLC leaf-pair optimal control of IMRT delivery for a moving rigid target.
    Papieza L
    Med Phys; 2004 Oct; 31(10):2742-54. PubMed ID: 15543779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf sequencing algorithms for segmented multileaf collimation.
    Kamath S; Sahni S; Li J; Palta J; Ranka S
    Phys Med Biol; 2003 Feb; 48(3):307-24. PubMed ID: 12608609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of IMRT delivery through MLC rotation.
    Otto K; Clark BG
    Phys Med Biol; 2002 Nov; 47(22):3997-4017. PubMed ID: 12476979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral loss and dose discrepancies of multileaf collimator segments in intensity modulated radiation therapy.
    Cheng CW; Das IJ; Huq MS
    Med Phys; 2003 Nov; 30(11):2959-68. PubMed ID: 14655943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A topographic leaf-sequencing algorithm for delivering intensity modulated radiation therapy.
    Desai D; Ramsey CR; Breinig M; Mahan SL
    Med Phys; 2006 Aug; 33(8):2751-6. PubMed ID: 16964850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of MLC leaf width on the planning and delivery of SMLC IMRT using the CORVUS inverse treatment planning system.
    Burmeister J; McDermott PN; Bossenberger T; Ben-Josef E; Levin K; Forman JD
    Med Phys; 2004 Dec; 31(12):3187-93. PubMed ID: 15651601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal leaf sequencing with elimination of tongue-and-groove underdosage.
    Kamath S; Sahni S; Palta J; Ranka S; Li J
    Phys Med Biol; 2004 Feb; 49(3):N7-19. PubMed ID: 15012015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery.
    Ranade MK; Lynch BD; Li JG; Dempsey JF
    Med Phys; 2006 Jan; 33(1):106-10. PubMed ID: 16485415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fewer segments for IMRT generated by modulation splitting.
    Webb S
    Phys Med Biol; 2002 Sep; 47(17):N217-22. PubMed ID: 12361224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of step-and-shoot leaf sequencing algorithms that eliminate tongue-and-groove effects.
    Kamath S; Sahni S; Ranka S; Li J; Palta J
    Phys Med Biol; 2004 Jul; 49(14):3137-43. PubMed ID: 15357187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithms for optimal sequencing of dynamic multileaf collimators.
    Kamath S; Sahni S; Palta J; Ranka S
    Phys Med Biol; 2004 Jan; 49(1):33-54. PubMed ID: 14971771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A feasibility study of using conventional jaws to deliver IMRT plans in the treatment of prostate cancer.
    Kim Y; Verhey LJ; Xia P
    Phys Med Biol; 2007 Apr; 52(8):2147-56. PubMed ID: 17404460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.