These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12361323)

  • 1. Separation and quantification of 238U, 232Th and rare earths in monazite samples by ion chromatography coupled with on-line flow scintillation detector.
    Borai EH; Mady AS
    Appl Radiat Isot; 2002 Oct; 57(4):463-9. PubMed ID: 12361323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of REEs distribution in monazite and xenotime minerals by ion chromatography and ICP-AES.
    Borai EH; Eid MA; Aly HF
    Anal Bioanal Chem; 2002 Feb; 372(4):537-41. PubMed ID: 11939628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential separation of actinides by ion chromatography coupled with on-line scintillation detection.
    Reboul SH; Borai EH; Fjeld RA
    Anal Bioanal Chem; 2002 Nov; 374(6):1096-100. PubMed ID: 12458426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry.
    Benkhedda K; Epov VN; Evans RD
    Anal Bioanal Chem; 2005 Apr; 381(8):1596-603. PubMed ID: 15827719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiological assessment of different monazite grades after mechanical separation from black sand.
    Kotb NA; Abd El Ghany MS; El-Sayed AA
    Sci Rep; 2023 Sep; 13(1):15389. PubMed ID: 37717074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry.
    Kannan V; Rajan MP; Iyenga MA; Ramesh R
    Appl Radiat Isot; 2002 Jul; 57(1):109-19. PubMed ID: 12137019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation behavior of U(VI) and Th(IV) on a cation exchange column using 2,6-pyridine dicarboxylic acid as a complexing agent and its application for the rapid separation and determination of U and Th by ion chromatography.
    Jeyakumar S; Mishra VG; Das MK; Raut VV; Sawant RM; Ramakumar KL
    J Sep Sci; 2011 Mar; 34(6):609-16. PubMed ID: 21328536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and determination of thorium, uranium and mixed rare-earth elements as their UV/Vis absorbing complexes by capillary zone electrophoresis.
    Liu BF; Liu LB; Cheng JK
    Talanta; 1998 Oct; 47(2):291-9. PubMed ID: 18967328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobility of radionuclides and trace elements in soil from legacy NORM and undisturbed naturally 232Th-rich sites.
    Mrdakovic Popic J; Meland S; Salbu B; Skipperud L
    Environ Sci Process Impacts; 2014 May; 16(5):1124-34. PubMed ID: 24699890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia.
    Ramli AT; Hussein AW; Wood AK
    J Environ Radioact; 2005; 80(3):287-304. PubMed ID: 15725504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of 238U, 232Th, 222Rn, and 220Rn in different medical drug preparations by using CR-39 and LR-115 typE II SSNTDs and resulting radiation doses to adult patients.
    Misdaq MA; Karime M
    Health Phys; 2009 Jan; 96(1):27-36. PubMed ID: 19066484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical distribution of hazardous natural radionuclides during monazite mineral processing.
    Hamed MM; Hilal MA; Borai EH
    J Environ Radioact; 2016 Oct; 162-163():166-171. PubMed ID: 27262430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Th series disequilibrium in Western Australian monazite.
    Kerrigan GC; O'Connor BH
    Health Phys; 1990 Feb; 58(2):157-63. PubMed ID: 2298571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The analysis of naturally-occurring radionuclides from uranium and thorium decay series in table mineral waters.
    Aellen TC; Umbricht O; Goerlich W
    Sci Total Environ; 1993 Mar; 130-131():253-9. PubMed ID: 8469952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC.
    Tsakanika LV; Ochsenkühn-Petropoulou MT; Mendrinos LN
    Anal Bioanal Chem; 2004 Jul; 379(5-6):796-802. PubMed ID: 15221192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural activities of 40K, 238U and 232Th in elephant grass (Pennisetum purpureum) in Ibadan metropolis, Nigeria.
    Jibiri NN; Ajao AO
    J Environ Radioact; 2005; 78(1):105-11. PubMed ID: 15465183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radium-226, 232Th, and 40K distribution in the environment of Kaiga of south west coast of India.
    Karunakara N; Somashekarappa HM; Avadhani DN; Mahesh HM; Narayana Y; Siddappa K
    Health Phys; 2001 May; 80(5):470-6. PubMed ID: 11316077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation and determination of lanthanides, thorium and uranium using a dual gradient in reversed-phase liquid chromatography.
    Raut NM; Jaison PG; Aggarwal SK
    J Chromatogr A; 2004 Oct; 1052(1-2):131-6. PubMed ID: 15527129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersion of U-series natural radionuclides in stream sediments from Edale, UK.
    Siddeeg SM; Bryan ND; Livens FR
    Environ Sci Process Impacts; 2014 May; 16(5):991-1000. PubMed ID: 24562972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and optimization of high-performance extraction chromatography method for separation of rare earth elements.
    Kifle D
    J Chromatogr A; 2024 Jun; 1730():465120. PubMed ID: 38944984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.